Semin Liver Dis 2022; 42(04): 455-464
DOI: 10.1055/a-1930-6658
Review Article

Shared Mechanisms between Cardiovascular Disease and NAFLD

Daniel Q. Huang
1   NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, San Diego, California
2   Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
3   Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
,
Michael Downes
4   Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, California
,
Ronald M. Evans
4   Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, California
,
Joseph L. Witztum
5   Division of Endocrinology and Metabolism, Department of Medicine, University California San Diego, San Diego, California
,
Christopher K. Glass
6   Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California
7   Department of Medicine, University of California San Diego, San Diego, California
,
Rohit Loomba
1   NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, San Diego, California
8   Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, California
› Author Affiliations
Funding R.L. receives funding support from NIAAA (U01AA029019), NIEHS (5P42ES010337), NCATS (5UL1TR001442), NIDDK (U01DK130190, U01DK061734, R01DK106419, P30DK120515, R01DK121378, R01DK124318), NHLBI (P01HL147835), and DOD PRCRP (W81XWH-18–2-0026).


Abstract

The burden of nonalcoholic fatty liver disease (NAFLD) is rising globally. Cardiovascular disease is the leading cause of death in patients with NAFLD. Nearly half of individuals with NAFLD have coronary heart disease, and more than a third have carotid artery atherosclerosis. Individuals with NAFLD are at a substantially higher risk of fatal and nonfatal cardiovascular events. NAFLD and cardiovascular disease share multiple common disease mechanisms, such as systemic inflammation, insulin resistance, genetic risk variants, and gut microbial dysbiosis. In this review, we discuss the epidemiology of cardiovascular disease in NAFLD, and highlight common risk factors. In addition, we examine recent advances evaluating the shared disease mechanisms between NAFLD and cardiovascular disease. In conclusion, multidisciplinary collaborations are required to further our understanding of the complex relationship between NAFLD and cardiovascular disease and potentially identify therapeutic targets.

Authors' Contributions

Study design was carried out by R.L. and D.Q.H. Data interpretation and review/revision of the manuscript was done by all authors. R.L. contributed to study concept and study supervision. All authors approve the final draft of the manuscript as well as the authorship list.




Publication History

Accepted Manuscript online:
25 August 2022

Article published online:
14 October 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64 (01) 73-84
  • 2 Le MH, Yeo YH, Li X. et al. Global NAFLD prevalence - a systematic review and meta-analysis. Clin Gastroenterol Hepatol 2021; S1542-3565 (21) 01280-5
  • 3 Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 2021; 184 (10) 2537-2564
  • 4 Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol 2013; 10 (11) 686-690
  • 5 Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2021; 18 (04) 223-238
  • 6 Tan DJH, Ng CH, Lin SY. et al. Clinical characteristics, surveillance, treatment allocation, and outcomes of non-alcoholic fatty liver disease-related hepatocellular carcinoma: a systematic review and meta-analysis. Lancet Oncol 2022; 23 (04) 521-530
  • 7 Huang DQ, Fowler KJ, Liau J. et al. Comparative efficacy of an optimal exam between ultrasound versus abbreviated MRI for HCC screening in NAFLD cirrhosis: a prospective study. Aliment Pharmacol Ther 2022; 55 (07) 820-827
  • 8 Huang DQ, Singal AG, Kono Y, Tan DJH, El-Serag HB, Loomba R. Changing global epidemiology of liver cancer from 2010 to 2019: NASH is the fastest growing cause of liver cancer. Cell Metab 2022; 34 (07) 969-977.e2
  • 9 Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 2018; 67 (01) 123-133
  • 10 Hardy T, Oakley F, Anstee QM, Day CP. Nonalcoholic fatty liver disease: pathogenesis and disease spectrum. Annu Rev Pathol 2016; 11: 451-496
  • 11 Caussy C, Aubin A, Loomba R. The relationship between type 2 diabetes, NAFLD, and cardiovascular risk. Curr Diab Rep 2021; 21 (05) 15
  • 12 Targher G, Byrne CD, Lonardo A, Zoppini G, Barbui C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: a meta-analysis. J Hepatol 2016; 65 (03) 589-600
  • 13 Sinn DH, Kang D, Chang Y. et al. Non-alcoholic fatty liver disease and progression of coronary artery calcium score: a retrospective cohort study. Gut 2017; 66 (02) 323-329
  • 14 Adams LA, Anstee QM, Tilg H, Targher G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut 2017; 66 (06) 1138-1153
  • 15 Lonardo A, Sookoian S, Pirola CJ, Targher G. Non-alcoholic fatty liver disease and risk of cardiovascular disease. Metabolism 2016; 65 (08) 1136-1150
  • 16 Targher G, Day CP, Bonora E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N Engl J Med 2010; 363 (14) 1341-1350
  • 17 Adams LA, Lymp JF, St Sauver J. et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 2005; 129 (01) 113-121
  • 18 Ekstedt M, Franzén LE, Mathiesen UL. et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 2006; 44 (04) 865-873
  • 19 Younossi ZM, Stepanova M, Rafiq N. et al. Nonalcoholic steatofibrosis independently predicts mortality in nonalcoholic fatty liver disease. Hepatol Commun 2017; 1 (05) 421-428
  • 20 Pais R, Giral P, Khan JF. et al; LIDO Study Group. Fatty liver is an independent predictor of early carotid atherosclerosis. J Hepatol 2016; 65 (01) 95-102
  • 21 Puchner SB, Lu MT, Mayrhofer T. et al. High-risk coronary plaque at coronary CT angiography is associated with nonalcoholic fatty liver disease, independent of coronary plaque and stenosis burden: results from the ROMICAT II trial. Radiology 2015; 274 (03) 693-701
  • 22 Park JG, Jung J, Verma KK. et al. Liver stiffness by magnetic resonance elastography is associated with increased risk of cardiovascular disease in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2021; 53 (09) 1030-1037
  • 23 VanWagner LB, Ning H, Lewis CE. et al. Associations between nonalcoholic fatty liver disease and subclinical atherosclerosis in middle-aged adults: the Coronary Artery Risk Development in Young Adults Study. Atherosclerosis 2014; 235 (02) 599-605
  • 24 Sookoian S, Pirola CJ. Non-alcoholic fatty liver disease is strongly associated with carotid atherosclerosis: a systematic review. J Hepatol 2008; 49 (04) 600-607
  • 25 Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med 2018; 24 (07) 908-922
  • 26 Targher G, Bertolini L, Padovani R. et al. Relations between carotid artery wall thickness and liver histology in subjects with nonalcoholic fatty liver disease. Diabetes Care 2006; 29 (06) 1325-1330
  • 27 Toh JZK, Pan XH, Tay PWL. et al. A meta-analysis on the global prevalence, risk factors and screening of coronary heart disease in nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2021; S1542-3565 (21) 01035-1
  • 28 Alexander M, Loomis AK, van der Lei J. et al. Non-alcoholic fatty liver disease and risk of incident acute myocardial infarction and stroke: findings from matched cohort study of 18 million European adults. BMJ 2019; 367: l5367
  • 29 Tang ASP, Chan KE, Quek J. et al. NAFLD increases risk of carotid atherosclerosis and ischemic stroke. An updated meta-analysis with 135,602 individuals. Korean J Hepatol 2022; 28 (03) 483-496
  • 30 Younossi Z, Anstee QM, Marietti M. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018; 15 (01) 11-20
  • 31 Leslie T, Pawloski L, Kallman-Price J. et al. Survey of health status, nutrition and geography of food selection of chronic liver disease patients. Ann Hepatol 2014; 13 (05) 533-540
  • 32 Gerber L, Otgonsuren M, Mishra A. et al. Non-alcoholic fatty liver disease (NAFLD) is associated with low level of physical activity: a population-based study. Aliment Pharmacol Ther 2012; 36 (08) 772-781
  • 33 Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus - mechanisms, management, and clinical considerations. Circulation 2016; 133 (24) 2459-2502
  • 34 Sookoian S, Pirola CJ. Review article: shared disease mechanisms between non-alcoholic fatty liver disease and metabolic syndrome - translating knowledge from systems biology to the bedside. Aliment Pharmacol Ther 2019; 49 (05) 516-527
  • 35 Salari N, Doulatyari PK, Daneshkhah A. et al. The prevalence of metabolic syndrome in cardiovascular patients in Iran: a systematic review and meta-analysis. Diabetol Metab Syndr 2020; 12 (01) 96
  • 36 Yki-Järvinen H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol 2014; 2 (11) 901-910
  • 37 Sookoian S, Castaño GO, Burgueño AL. et al. Circulating levels and hepatic expression of molecular mediators of atherosclerosis in nonalcoholic fatty liver disease. Atherosclerosis 2010; 209 (02) 585-591
  • 38 Anstee QM, Mantovani A, Tilg H, Targher G. Risk of cardiomyopathy and cardiac arrhythmias in patients with nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2018; 15 (07) 425-439
  • 39 Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol 2017; 17 (05) 306-321
  • 40 Feldstein AE, Werneburg NW, Canbay A. et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology 2004; 40 (01) 185-194
  • 41 Wieckowska A, Papouchado BG, Li Z, Lopez R, Zein NN, Feldstein AE. Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis. Am J Gastroenterol 2008; 103 (06) 1372-1379
  • 42 Chávez-Tapia NC, Rosso N, Uribe M, Bojalil R, Tiribelli C. Kinetics of the inflammatory response induced by free fatty acid accumulation in hepatocytes. Ann Hepatol 2013; 13 (01) 113-120
  • 43 Fricker ZP, Pedley A, Massaro JM. et al. Liver fat is associated with markers of inflammation and oxidative stress in analysis of data from the Framingham Heart Study. Clin Gastroenterol Hepatol 2019; 17 (06) 1157-1164.e4
  • 44 Simon TG, Trejo MEP, McClelland R. et al. Circulating interleukin-6 is a biomarker for coronary atherosclerosis in nonalcoholic fatty liver disease: results from the Multi-Ethnic Study of Atherosclerosis. Int J Cardiol 2018; 259: 198-204
  • 45 Kaptoge S, Di Angelantonio E, Pennells L. et al; Emerging Risk Factors Collaboration. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med 2012; 367 (14) 1310-1320
  • 46 Dusi V, Ghidoni A, Ravera A, De Ferrari GM, Calvillo L. Chemokines and heart disease: a network connecting cardiovascular biology to immune and autonomic nervous systems. Mediators Inflamm 2016; 2016: 5902947
  • 47 Tang WHW, Bäckhed F, Landmesser U, Hazen SL. Intestinal microbiota in cardiovascular health and disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 73 (16) 2089-2105
  • 48 Duewell P, Kono H, Rayner KJ. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010; 464 (7293): 1357-1361
  • 49 Bäck M, Yurdagul Jr A, Tabas I, Öörni K, Kovanen PT. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol 2019; 16 (07) 389-406
  • 50 Libby P, Ridker PM, Hansson GK. Leducq Transatlantic Network on Atherothrombosis. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 2009; 54 (23) 2129-2138
  • 51 Petta S, Argano C, Colomba D. et al. Epicardial fat, cardiac geometry and cardiac function in patients with non-alcoholic fatty liver disease: association with the severity of liver disease. J Hepatol 2015; 62 (04) 928-933
  • 52 Liu B, Li Y, Li Y. et al. Association of epicardial adipose tissue with non-alcoholic fatty liver disease: a meta-analysis. Hepatol Int 2019; 13 (06) 757-765
  • 53 Packer M. Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium. J Am Coll Cardiol 2018; 71 (20) 2360-2372
  • 54 Madonna R, Massaro M, Scoditti E, Pescetelli I, De Caterina R. The epicardial adipose tissue and the coronary arteries: dangerous liaisons. Cardiovasc Res 2019; 115 (06) 1013-1025
  • 55 Iacobellis G, Bianco AC. Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol Metab 2011; 22 (11) 450-457
  • 56 Perseghin G, Price TB, Petersen KF. et al. Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N Engl J Med 1996; 335 (18) 1357-1362
  • 57 Petersen KF, Dufour S, Savage DB. et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A 2007; 104 (31) 12587-12594
  • 58 Flannery C, Dufour S, Rabøl R, Shulman GI, Petersen KF. Skeletal muscle insulin resistance promotes increased hepatic de novo lipogenesis, hyperlipidemia, and hepatic steatosis in the elderly. Diabetes 2012; 61 (11) 2711-2717
  • 59 Howard G, O'Leary DH, Zaccaro D. et al; The Insulin Resistance Atherosclerosis Study (IRAS) Investigators. Insulin sensitivity and atherosclerosis. Circulation 1996; 93 (10) 1809-1817
  • 60 Gast KB, Tjeerdema N, Stijnen T, Smit JW, Dekkers OM. Insulin resistance and risk of incident cardiovascular events in adults without diabetes: meta-analysis. PLoS One 2012; 7 (12) e52036
  • 61 Scherer T, Lindtner C, O'Hare J. et al. Insulin regulates hepatic triglyceride secretion and lipid content via signaling in the brain. Diabetes 2016; 65 (06) 1511-1520
  • 62 Cusi K, Maezono K, Osman A. et al. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 2000; 105 (03) 311-320
  • 63 Lindsey JB, House JA, Kennedy KF, Marso SP. Diabetes duration is associated with increased thin-cap fibroatheroma detected by intravascular ultrasound with virtual histology. Circ Cardiovasc Interv 2009; 2 (06) 543-548
  • 64 Porter KE, Riches K. The vascular smooth muscle cell: a therapeutic target in Type 2 diabetes?. Clin Sci (Lond) 2013; 125 (04) 167-182
  • 65 Di Pino A, DeFronzo RA. Insulin resistance and atherosclerosis: implications for insulin-sensitizing agents. Endocr Rev 2019; 40 (06) 1447-1467
  • 66 Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation 2004; 109 (23, Suppl 1): III27-III32
  • 67 Villanova N, Moscatiello S, Ramilli S. et al. Endothelial dysfunction and cardiovascular risk profile in nonalcoholic fatty liver disease. Hepatology 2005; 42 (02) 473-480
  • 68 Chiang C-H, Huang P-H, Chung F-P. et al. Decreased circulating endothelial progenitor cell levels and function in patients with nonalcoholic fatty liver disease. PLoS One 2012; 7 (02) e31799
  • 69 Gulsen M, Yesilova Z, Bagci S. et al. Elevated plasma homocysteine concentrations as a predictor of steatohepatitis in patients with non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2005; 20 (09) 1448-1455
  • 70 Guthikonda S, Haynes WG. Homocysteine: role and implications in atherosclerosis. Curr Atheroscler Rep 2006; 8 (02) 100-106
  • 71 McCully KS. Homocysteine and the pathogenesis of atherosclerosis. Expert Rev Clin Pharmacol 2015; 8 (02) 211-219
  • 72 Sookoian S, Gianotti TF, Rosselli MS, Burgueño AL, Castaño GO, Pirola CJ. Liver transcriptional profile of atherosclerosis-related genes in human nonalcoholic fatty liver disease. Atherosclerosis 2011; 218 (02) 378-385
  • 73 Michalik L, Auwerx J, Berger JP. et al. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 2006; 58 (04) 726-741
  • 74 Han L, Shen WJ, Bittner S, Kraemer FB, Azhar S. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-β/δ and PPAR-γ. Future Cardiol 2017; 13 (03) 279-296
  • 75 Sookoian S, Rosselli MS, Gemma C. et al. Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator-activated receptor γ coactivator 1α promoter. Hepatology 2010; 52 (06) 1992-2000
  • 76 Gawrieh S, Noureddin M, Loo N. et al. Saroglitazar, a PPAR-α/γ agonist, for treatment of NAFLD: a randomized controlled double-blind phase 2 trial. Hepatology 2021; 74 (04) 1809-1824
  • 77 Francque SM, Bedossa P, Ratziu V. et al; NATIVE Study Group. A randomized, controlled trial of the Pan-PPAR agonist lanifibranor in NASH. N Engl J Med 2021; 385 (17) 1547-1558
  • 78 Nakajima A, Eguchi Y, Yoneda M. et al. Randomised clinical trial: pemafibrate, a novel selective peroxisome proliferator-activated receptor α modulator (SPPARMα), versus placebo in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2021; 54 (10) 1263-1277
  • 79 Cusi K, Orsak B, Bril F. et al. Long-term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: a randomized trial. Ann Intern Med 2016; 165 (05) 305-315
  • 80 Sharpton SR, Ajmera V, Loomba R. Emerging role of the gut microbiome in nonalcoholic fatty liver disease: from composition to function. Clin Gastroenterol Hepatol 2019; 17 (02) 296-306
  • 81 Miele L, Valenza V, La Torre G. et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 2009; 49 (06) 1877-1887
  • 82 Loomba R, Seguritan V, Li W. et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab 2017; 25 (05) 1054-1062.e5
  • 83 Caussy C, Tripathi A, Humphrey G. et al. A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease. Nat Commun 2019; 10 (01) 1406
  • 84 Jie Z, Xia H, Zhong SL. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 2017; 8 (01) 845
  • 85 Yin J, Liao SX, He Y. et al. Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc 2015; 4 (11) e002699
  • 86 Shen F, Zheng RD, Sun XQ, Ding WJ, Wang XY, Fan JG. Gut microbiota dysbiosis in patients with non-alcoholic fatty liver disease. Hepatobiliary Pancreat Dis Int 2017; 16 (04) 375-381
  • 87 Boursier J, Mueller O, Barret M. et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 2016; 63 (03) 764-775
  • 88 Aron-Wisnewsky J, Vigliotti C, Witjes J. et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat Rev Gastroenterol Hepatol 2020; 17 (05) 279-297
  • 89 Loomba R, Schork N, Chen CH. et al; Genetics of NAFLD in Twins Consortium. Heritability of hepatic fibrosis and steatosis based on a prospective twin study. Gastroenterology 2015; 149 (07) 1784-1793
  • 90 Eslam M, George J. Genetic contributions to NAFLD: leveraging shared genetics to uncover systems biology. Nat Rev Gastroenterol Hepatol 2020; 17 (01) 40-52
  • 91 Stender S, Loomba R. PNPLA3 genotype and risk of liver and all-cause mortality. Hepatology 2020; 71 (03) 777-779
  • 92 Unalp-Arida A, Ruhl CE. Patatin-like phospholipase domain-containing protein 3 I148M and liver fat and fibrosis scores predict liver disease mortality in the U.S. population. Hepatology 2020; 71 (03) 820-834
  • 93 Romeo S, Kozlitina J, Xing C. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40 (12) 1461-1465
  • 94 Bruschi FV, Claudel T, Tardelli M. et al. The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells. Hepatology 2017; 65 (06) 1875-1890
  • 95 Eslam M, Mangia A, Berg T. et al; International Liver Disease Genetics Consortium. Diverse impacts of the rs58542926 E167K variant in TM6SF2 on viral and metabolic liver disease phenotypes. Hepatology 2016; 64 (01) 34-46
  • 96 Kozlitina J, Smagris E, Stender S. et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2014; 46 (04) 352-356
  • 97 Liu DJ, Peloso GM, Yu H. et al; Charge Diabetes Working Group; EPIC-InterAct Consortium; EPIC-CVD Consortium; GOLD Consortium; VA Million Veteran Program. Exome-wide association study of plasma lipids in >300,000 individuals. Nat Genet 2017; 49 (12) 1758-1766
  • 98 Pirola CJ, Sookoian S. The dual and opposite role of the TM6SF2-rs58542926 variant in protecting against cardiovascular disease and conferring risk for nonalcoholic fatty liver: a meta-analysis. Hepatology 2015; 62 (06) 1742-1756
  • 99 Simons N, Isaacs A, Koek GH, Kuč S, Schaper NC, Brouwers MCGJ. PNPLA3, TM6SF2, and MBOAT7 genotypes and coronary artery disease. Gastroenterology 2017; 152 (04) 912-913
  • 100 Dongiovanni P, Petta S, Maglio C. et al. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology 2015; 61 (02) 506-514
  • 101 Rüschenbaum S, Schwarzkopf K, Friedrich-Rust M. et al. Patatin-like phospholipase domain containing 3 variants differentially impact metabolic traits in individuals at high risk for cardiovascular events. Hepatol Commun 2018; 2 (07) 798-806
  • 102 Neuschwander-Tetri BA, Loomba R, Sanyal AJ. et al; NASH Clinical Research Network. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 2015; 385 (9972): 956-965
  • 103 Younossi ZM, Ratziu V, Loomba R. et al; REGENERATE Study Investigators. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2019; 394 (10215): 2184-2196
  • 104 Ramachandran P, Dobie R, Wilson-Kanamori JR. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 2019; 575 (7783): 512-518
  • 105 Depuydt MAC, Prange KHM, Slenders L. et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ Res 2020; 127 (11) 1437-1455
  • 106 Yong JN, Ng CH, Lee CW. et al. Non-alcoholic fatty liver disease association with structural heart, systolic and diastolic dysfunction: a meta-analysis. Hepatol Int 2022; 16 (02) 269-281
  • 107 Mantovani A, Dauriz M, Sandri D. et al. Association between non-alcoholic fatty liver disease and risk of atrial fibrillation in adult individuals: an updated meta-analysis. Liver Int 2019; 39 (04) 758-769
  • 108 Ciardullo S, Grassi G, Mancia G, Perseghin G. Nonalcoholic fatty liver disease and risk of incident hypertension: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2022; 34 (04) 365-371