CC BY-NC-ND 4.0 · SynOpen 2022; 06(04): 270-285
DOI: 10.1055/a-1947-3351
review

Recent Progress on the [3+2] Cycloaddition Route for the Synthesis of All-Carbon Quaternary Stereocentres

Ani Deepthi
,
Maneesh Mohan
,
Meenakshy C. Balachandran
M.M. and M.C.B. thank the University of Kerala for Research Fellowships.


Abstract

Construction of all-carbon quaternary centres is an important task in organic synthesis. In spite of the challenges associated with Csp3–Csp3 bond construction in a sterically constrained environment, significant advances have been made in this area. Among the latter, both catalytic and noncatalytic [3+2] cycloaddition approaches have gained wide attention recently. This short review summarizes the [3+2] cycloaddition reactions reported during the period 2016–2022 for the synthesis of molecules possessing one or more all-carbon quaternary stereocentres.



Publication History

Received: 22 July 2022

Accepted: 19 September 2022

Accepted Manuscript online:
20 September 2022

Article published online:
20 October 2022

© 2022. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Fuji K. Chem. Rev. 1993; 93: 2037
  • 2 Christoffers J, Mann A. Angew. Chem. Int. Ed. 2001; 40: 4591
  • 3 Bora D, Kaushal A, Shankaraiah N. Eur. J. Med. Chem. 2021; 215: 113263
    • 4a Chen Y, Luo Y, Ju J, Wendt-Pienkowski E, Rajski SR, Shen B. J. Nat. Prod. 2008; 71: 431
    • 4b Nicolaou KC, Montagnon T, Vassilikogiannakis G. Chem. Commun. 2002; 2478
    • 5a White DE, Stewart IC, Grubbs RH, Stoltz BM. J. Am. Chem. Soc. 2008; 130: 810
    • 5b Sawada T, Nakada M. Org. Lett. 2013; 15: 1004
    • 5c Jossang A, Jossang P, Hadi HA, Sevenet T, Bodo B. J. Org. Chem. 1991; 56: 6527
  • 6 Riant O, Hannedouche J. Org. Biomol. Chem. 2007; 5: 873
  • 7 Cozzi PG, Hilgraf R, Zimmermann N. Eur. J. Org. Chem. 2007; 5969
  • 8 Bella M, Gasperi T. Synthesis 2009; 1583
  • 9 Quasdorf KW, Overman LE. Nature 2014; 516: 181
  • 10 Corey EJ, Guzman-Perez A. Angew. Chem. Int. Ed. 1998; 37: 388
  • 11 Willis MC. J. Chem. Soc., Perkin Trans. 1 1999; 1765
  • 12 Hashimoto T, Maruoka K. Chem. Rev. 2015; 115: 5366
  • 13 Wang Z, Liu J. Beilstein J. Org. Chem. 2020; 16: 3015

    • For reviews on the synthesis and reactivity of VCPs, see:
    • 14a Ganesh V, Chandrasekharan S. Synthesis 2016; 48: 4347
    • 14b Brownsey DK, Gorobets E, Derksen DJ. Org. Biomol. Chem. 2018; 16: 3506

      Some examples include:
    • 15a Trost BM, Morris PJ, Sprague SJ. J. Am. Chem. Soc. 2012; 134: 17823
    • 15b Mei L.-Y, Wei Y, Shi M, Xu Q. Organometallics 2013; 32: 3544
    • 15c Xie M.-S, Wang Y, Li J.-P, Du C, Zhang Y.-Y, Hao E.-J, Zhang Y.-M, Qu G.-R, Guo H.-M. Chem. Commun. 2015; 51: 12451
  • 16 Halskov KS, Nӕsborg L, Tur F, Jørgensen KA. Org. Lett. 2016; 18: 2220
  • 17 Laugeois M, Ponra S, Ratovelomanana-Vidal V, Michelet V, Vitale MR. Chem. Commun. 2016; 52: 5332
  • 18 Wan Q, Chen L, Li S, Kang Q, Yuan Y, Du Y. Org. Lett. 2020; 22: 9539
  • 19 Pirenne V, Muriel B, Waser J. Chem. Rev. 2021; 121: 227
  • 20 Xiao J.-A, Xia PJ, Zhang X.-Y, Chen X.-Q, Ou G.-C, Yang H. Chem. Commun. 2016; 52: 2177
  • 21 Verma K, Banerjee P. Adv. Synth. Catal. 2017; 359: 3848
  • 22 Dai C, Li M, Chen M, Luo N, Wang C. J. Chem. Res. 2019; 43: 43
  • 23 Muriel B, Gagnebin A, Waser J. Chem. Sci. 2019; 10: 10716
  • 24 Uraguchi D, Kimura Y, Ueoka F, Ooi T. J. Am. Chem. Soc. 2020; 142: 19462
  • 25 Pirenne V, Robert EG. L, Waser J. Chem. Sci. 2021; 12: 8706
  • 26 Yin Y, Li Y, Gonçalves TP, Zhan Q, Wang G, Zhao X, Qiao B, Huang K.-W, Jiang Z. J. Am. Chem. Soc. 2020; 142: 19451
    • 27a Chen Y.-R, Ganapuram MR, Hsieh K.-H, Chen K.-H, Karanam P, Vagh SS, Liou Y.-C, Lin W. Chem. Commun. 2018; 54: 12702
    • 27b Vagh SS, Karanam P, Liao C.-C, Liu T.-H, Liou Y.-C, Edukondalu A, Chen Y.-R, Lin W. Adv. Synth. Catal. 2020; 362: 1679
    • 27c Khairnar PV, Su Y.-H, Edukondalu A, Lin W. J. Org. Chem. 2021; 86: 12326
  • 28 Yi Y, Hua Y.-Z, Lu H.-J, Liu L.-T, Wang M.-C. Org. Lett. 2020; 22: 2527
  • 29 Li Z, Lu Y, Tian YP, Hao X.-X, Liu X.-W, Zhou Y, Liu X.-L. Tetrahedron 2021; 98: 132297
  • 30 Duffy C, Roe WE, Harkin AH, McNamee R, Knipe PC. New J. Chem. 2021; 45: 22034
  • 31 Xu B, Zhang Z.-M, Liu B, Xu S, Zhou L.-J, Zhang J. Chem. Commun. 2017; 53: 8152
    • 32a Xu B, Zhang Z.-M, Xu X, Liu B, Xiao Y, Zhang J. ACS Catal. 2017; 7: 210
    • 32b Liu B, Zhang Z.-M, Xu B, Xu S, Wu H.-H, Zhang J. Adv. Synth. Catal. 2018; 360: 2144
  • 33 Xu S, Zhang Z.-M, Xu B, Liu B, Liu Y, Zhang J. J. Am. Chem. Soc. 2018; 140: 2272
  • 34 Xu B, Zhang Z.-M, Zhou L, Zhang J. Org. Lett. 2018; 20: 2716
  • 35 Boudriga S, Haddad S, Askri M, Soldera A, Knorr M, Strohmann C, Golz C. RSC Adv. 2019; 9: 11082
  • 36 Huang Y, Fang H.-L, Huang Y.-X, Sun J, Yan C.-G. J. Org. Chem. 2019; 84: 12437
  • 37 Imagawa N, Nagato Y, Ohmatsu K, Ooi T. Bull. Chem. Soc. Jpn. 2016; 89: 649
  • 38 Wang J, Zhao L, Rong Q, Lv C, Lu Y, Pan X, Zhao L, Hu L. Org. Lett. 2020; 22: 5833
  • 39 Ming S, Qurban S, Du Y, Su W. Chem. Eur. J. 2021; 27: 12742
  • 40 Zhang Y, Qin T, Zi W. J. Am. Chem. Soc. 2021; 143: 1038
  • 41 Gao C, Zhang T, Li X, Wu J.-D, Liu J. Org. Chem. Front. 2022; 9: 2121
  • 42 Zhang C, Lu X. J. Org. Chem. 1995; 60: 2906
    • 43a Wei Y, Shi M. Org. Chem. Front. 2017; 4: 1876
    • 43b Ni H, Chan W.-L, Lu Y. Chem. Rev. 2018; 118: 9344
    • 43c Guo H, Fan YC, Sun Z, Wu Y, Kwon O. Chem. Rev. 2018; 118: 10049
  • 44 Li H, Lu Y. Asian J. Org. Chem. 2017; 6: 1130
  • 45 Ni H, Yao W, Lu Y. Beilstein J. Org. Chem. 2016; 12: 343
  • 46 Chen G.-S, Zhang J.-W, Li Z.-D, Zhao Y.-L, Liu Y.-L. Org. Chem. Front. 2020; 7: 3399
  • 47 Gao Y, Zhang J, Shan W, Fei W, Yao J, Yao W. Org. Lett. 2021; 23: 6377
  • 48 Oga M, Takamatsu Y, Ogura A, Takao K. J. Org. Chem. 2022; 87: 8788
  • 49 Ren H.-X, Peng L, Song X.-J, Liao L.-G, Zou Y, Tian F, Wang L.-X. Org. Biomol. Chem. 2018; 16: 1297
  • 50 Li S, Zhang P, Li Y, Lu S, Gong J, Yang Z. Org. Lett. 2017; 19: 4416
  • 51 Lozanova AV, Stepanov AV, Zlokazov MV, Veselovsky VV. ARKIVOC 2017; (iii): 217
  • 52 Ramu G, Krishna NH, Pawar G, Sastry KN. V, Nanubolu JB, Babu BN. ACS Omega 2018; 3: 12349
  • 53 Zhong J, He H, Gao S. Org. Chem. Front. 2019; 6: 3781
  • 54 Shi H, Michaelides IN, Derses B, Jakubee P, Nguyen QN. N, Paton RS, Dixon DJ. J. Am. Chem. Soc. 2017; 139: 17755
  • 55 Ji Y, Xin Z, He H, Gao S. J. Am. Chem. Soc. 2019; 141: 16208
  • 56 Ling T, Rivas F. Tetrahedron 2016; 72: 6729
  • 57 Zeng X.-P, Cao Z.-Y, Wang Y.-H, Zhou F, Zhou J. Chem. Rev. 2016; 116: 7330
  • 58 Feng J, Holmes M, Krische MJ. Chem. Rev. 2017; 117: 12564
  • 59 Xu P.-W, Yu J.-S, Chen C, Cao Z.-Y, Zhou F, Zhou J. ACS Catal. 2019; 9: 1820
  • 60 Wang Z, Liu J. Beilstein J. Org. Chem. 2020; 16: 3015
  • 61 Wang Z. Org. Chem. Front. 2020; 7: 3815