Subscribe to RSS
DOI: 10.1055/a-1950-5694
Expected value of artificial intelligence in gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement
Abstract
This ESGE Position Statement defines the expected value of artificial intelligence (AI) for the diagnosis and management of gastrointestinal neoplasia within the framework of the performance measures already defined by ESGE. This is based on the clinical relevance of the expected task and the preliminary evidence regarding artificial intelligence in artificial or clinical settings.
Main recommendations: (1) For acceptance of AI in assessment of completeness of upper GI endoscopy, the adequate level of mucosal inspection with AI should be comparable to that assessed by experienced endoscopists. (2) For acceptance of AI in assessment of completeness of upper GI endoscopy, automated recognition and photodocumentation of relevant anatomical landmarks should be obtained in ≥90% of the procedures. (3) For acceptance of AI in the detection of Barrett’s high grade intraepithelial neoplasia or cancer, the AI-assisted detection rate for suspicious lesions for targeted biopsies should be comparable to that of experienced endoscopists with or without advanced imaging techniques. (4) For acceptance of AI in the management of Barrett’s neoplasia, AI-assisted selection of lesions amenable to endoscopic resection should be comparable to that of experienced endoscopists. (5) For acceptance of AI in the diagnosis of gastric precancerous conditions, AI-assisted diagnosis of atrophy and intestinal metaplasia should be comparable to that provided by the established biopsy protocol, including the estimation of extent, and consequent allocation to the correct endoscopic surveillance interval. (6) For acceptance of artificial intelligence for automated lesion detection in small-bowel capsule endoscopy (SBCE), the performance of AI-assisted reading should be comparable to that of experienced endoscopists for lesion detection, without increasing but possibly reducing the reading time of the operator. (7) For acceptance of AI in the detection of colorectal polyps, the AI-assisted adenoma detection rate should be comparable to that of experienced endoscopists. (8) For acceptance of AI optical diagnosis (computer-aided diagnosis [CADx]) of diminutive polyps (≤5 mm), AI-assisted characterization should match performance standards for implementing resect-and-discard and diagnose-and-leave strategies. (9) For acceptance of AI in the management of polyps ≥ 6 mm, AI-assisted characterization should be comparable to that of experienced endoscopists in selecting lesions amenable to endoscopic resection.
* Helmut Messmann and Raf Bisschops, first authors, contributed equally to this manuscript.
** Although both ESGE and the Thieme Group adhere to a policy prohibiting publications by Russian authors in Endoscopy at this time, an exception has been made to include Dr. Kuvaev due to the fact that his significant contribution to this Position Statement was made before Russia’s invasion of Ukraine.
*** Cesare Hassan and Mario Dinis-Ribeiro, senior authors, contributed equally to this manuscript.
Publication History
Article published online:
21 October 2022
© 2022. European Society of Gastrointestinal Endoscopy. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Bisschops R, East JE, Hassan C. et al. Advanced imaging for detection and differentiation of colorectal neoplasia: European Society of Gastrointestinal Endoscopy (ESGE) Guideline – Update 2019. Endoscopy 2019; 51: 1155-1179 DOI: 10.1055/a-1031-7657.
- 2 Ahmad OF, Stoyanov D, Lovat LB. Barriers and pitfalls for artificial intelligence in gastroenterology: Ethical and regulatory issues. Tech Gastrointest Endosc 2019; 150636 DOI: 10.1016/j.tgie.2019.150636.
- 3 Byrne M. Artificial intelligence in gastroenterology. Tech Gastrointest Endosc 2019; 150641 DOI: 10.1016/j.tgie.2019.150641.
- 4 de Groen PC. Using artificial intelligence to improve adequacy of inspection in gastrointestinal endoscopy. Tech Gastrointest Endosc 2019; 150640 DOI: 10.1016/j.tgie.2019.150640.
- 5 Parasa S, Wallace M, Bagci U. et al. Proceedings from the First Global Artificial Intelligence in Gastroenterology and Endoscopy Summit. Gastrointest Endosc 2020; DOI: 10.1016/j.gie.2020.04.044.
- 6 Mori Y, Kudo S, Misawa M. et al. Artificial intelligence for colorectal polyp detection and characterization. Curr Treat Options Gastroenterol 2020; DOI: 10.1007/s11938-020-00287-x.
- 7 van der Sommen F, de Groof J, Struyvenberg M. et al. Machine learning in GI endoscopy: practical guidance in how to interpret a novel field. Gut 2020; DOI: 10.1136/gutjnl-2019-320466.
- 8 Bisschops R, Areia M, Coron E. et al. Performance measures for upper gastrointestinal endoscopy: a European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative. Endoscopy 2016; 48: 843-864 DOI: 10.1055/s-0042-113128.
- 9 Kaminski MF, Thomas-Gibson S, Bugajski M. et al. Performance measures for lower gastrointestinal endoscopy: a European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative. Endoscopy 2017; 49: 378-397 DOI: 10.1055/s-0043-103411.
- 10 Domagk D, Oppong KW, Aabakken L. et al. Performance measures for ERCP and endoscopic ultrasound: a European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative. Endoscopy 2018; 50: 1116-1127 DOI: 10.1055/a-0749-8767.
- 11 Rutter MD, Senore C, Bisschops R. et al. The European Society of Gastrointestinal Endoscopy Quality Improvement Initiative: developing performance measures. Endoscopy 2016; 48: 81-89 DOI: 10.1055/s-0035-1569580.
- 12 Menon S, Trudgill N. How commonly is upper gastrointestinal cancer missed at endoscopy?. A meta-analysis. Endosc Int Open 2014; 2: E46-50 DOI: 10.1055/s-0034-1365524.
- 13 Pimenta-Melo AR, Monteiro-Soares M, Libânio D. et al. Missing rate for gastric cancer during upper gastrointestinal endoscopy: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2016; 28: 1041-1049 DOI: 10.1097/MEG.0000000000000657.
- 14 Frazzoni L, Arribas J, Antonelli G. et al. Endoscopists’ diagnostic accuracy in detecting upper gastrointestinal neoplasia in the framework of artificial intelligence studies. Endoscopy 2021; DOI: 10.1055/a-1500-3730.
- 15 Wu L, Zhang J, Zhou W. et al. Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy. Gut 2019; 68: 2161-2169 DOI: 10.1136/gutjnl-2018-317366.
- 16 Chen D, Wu L, Li Y. et al. Comparing blind spots of unsedated ultrafine, sedated, and unsedated conventional gastroscopy with and without artificial intelligence: a prospective, single-blind, 3-parallel-group, randomized, single-center trial. Gastrointest Endosc 2020; 91: 332-339.e3 DOI: 10.1016/j.gie.2019.09.016.
- 17 Choi SJ, Khan MA, Choi HS. et al. Development of artificial intelligence system for quality control of photo documentation in esophagogastroduodenoscopy. Surg Endosc 2022; 36: 57-65 DOI: 10.1007/s00464-020-08236-6.
- 18 Li Y-D, Zhu S-W, Yu J-P. et al. Intelligent detection endoscopic assistant: An artificial intelligence-based system for monitoring blind spots during esophagogastroduodenoscopy in real-time. Dig Liver Dis 2021; 53: 216-223 DOI: 10.1016/j.dld.2020.11.017.
- 19 Wu L, Zhou W, Wan X. et al. A deep neural network improves endoscopic detection of early gastric cancer without blind spots. Endoscopy 2019; 51: 522-531 DOI: 10.1055/a-0855-3532.
- 20 Xu Z, Tao Y, Wenfang Z. et al. Upper gastrointestinal anatomy detection with multi-task convolutional neural networks. Healthc Technol Lett 2019; 6: 176-180 DOI: 10.1049/htl.2019.0066.
- 21 Rodríguez de Santiago E, Hernanz N, Marcos-Prieto HM. et al. Rate of missed oesophageal cancer at routine endoscopy and survival outcomes: A multicentric cohort study. United Eur Gastroenterol J 2019; 7: 189-198 DOI: 10.1177/2050640618811477.
- 22 Buchner AM, Shahid MW, Heckman MG. et al. Trainee participation is associated with increased small adenoma detection. Gastrointest Endosc 2011; 73: 1223-1231 DOI: 10.1016/j.gie.2011.01.060.
- 23 Aslanian HR, Shieh FK, Chan FW. et al. Nurse observation during colonoscopy increases polyp detection: a randomized prospective study. Am J Gastroenterol 2013; 108: 166-172 DOI: 10.1038/ajg.2012.237.
- 24 Lee CK, Park DI, Lee S-H. et al. Participation by experienced endoscopy nurses increases the detection rate of colon polyps during a screening colonoscopy: a multicenter, prospective, randomized study. Gastrointest Endosc 2011; 74: 1094-1102 DOI: 10.1016/j.gie.2011.06.033.
- 25 Muto M, Minashi K, Yano T. et al. Early detection of superficial squamous cell carcinoma in the head and neck region and esophagus by narrow band imaging: a multicenter randomized controlled trial. J Clin Oncol 2010; 28: 1566-1572 DOI: 10.1200/JCO.2009.25.4680.
- 26 Quang T, Schwarz RA, Dawsey SM. et al. A tablet-interfaced high-resolution microendoscope with automated image interpretation for real-time evaluation of esophageal squamous cell neoplasia. Gastrointest Endosc 2016; 84: 834-841 DOI: 10.1016/j.gie.2016.03.1472.
- 27 Shin D, Protano M-A, Polydorides AD. et al. Quantitative analysis of high-resolution microendoscopic images for diagnosis of esophageal squamous cell carcinoma. Clin Gastroenterol Hepatol 2015; 13: 272-279.e2 DOI: 10.1016/j.cgh.2014.07.030.
- 28 Tokai Y, Yoshio T, Aoyama K. et al. Application of artificial intelligence using convolutional neural networks in determining the invasion depth of esophageal squamous cell carcinoma. Esophagus 2020; DOI: 10.1007/s10388-020-00716-x.
- 29 Guo L, Xiao X, Wu C. et al. Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos). Gastrointest Endosc 2020; 91: 41-51 DOI: 10.1016/j.gie.2019.08.018.
- 30 Kumagai Y, Takubo K, Kawada K. et al. Diagnosis using deep-learning artificial intelligence based on the endocytoscopic observation of the esophagus. Esophagus 2019; 16: 180-187 DOI: 10.1007/s10388-018-0651-7.
- 31 Everson M, Herrera L, Li W. et al. Artificial intelligence for the real-time classification of intrapapillary capillary loop patterns in the endoscopic diagnosis of early oesophageal squamous cell carcinoma: A proof-of-concept study. United Eur Gastroenterol J 2019; 7: 297-306 DOI: 10.1177/2050640618821800.
- 32 Horie Y, Yoshio T, Aoyama K. et al. Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointest Endosc 2019; 89: 25-32 DOI: 10.1016/j.gie.2018.07.037.
- 33 Ohmori M, Ishihara R, Aoyama K. et al. Endoscopic detection and differentiation of esophageal lesions using a deep neural network. Gastrointest Endosc 2020; 91: 301-309.e1 DOI: 10.1016/j.gie.2019.09.034.
- 34 Arribas J, Antonelli G, Frazzoni L. et al. Standalone performance of artificial intelligence for upper GI neoplasia: a meta-analysis. Gut 2020; DOI: 10.1136/gutjnl-2020-321922.
- 35 Yu T, Geng J, Song W. et al. Diagnostic accuracy of magnifying endoscopy with narrow band imaging and its diagnostic value for invasion depth staging in esophageal squamous cell carcinoma: A systematic review and meta-analysis. BioMed Res Int 2018; 2018: 8591387 DOI: 10.1155/2018/8591387.
- 36 Inoue H, Kaga M, Ikeda H. et al. Magnification endoscopy in esophageal squamous cell carcinoma: a review of the intrapapillary capillary loop classification. Ann Gastroenterol 2015; 28: 41-48
- 37 Nakagawa K, Ishihara R, Aoyama K. et al. Classification for invasion depth of esophageal squamous cell carcinoma using a deep neural network compared with experienced endoscopists. Gastrointest Endosc 2019; 90: 407-414 DOI: 10.1016/j.gie.2019.04.245.
- 38 Shimamoto Y, Ishihara R, Kato Y. et al. Real-time assessment of video images for esophageal squamous cell carcinoma invasion depth using artificial intelligence. J Gastroenterol 2020; 55: 1037-1045 DOI: 10.1007/s00535-020-01716-5.
- 39 Visrodia K, Singh S, Krishnamoorthi R. et al. Magnitude of missed esophageal adenocarcinoma after Barrett’s esophagus diagnosis: A systematic review and meta-analysis. Gastroenterology 2016; 150: 599-607.e7 quiz e14–15 DOI: 10.1053/j.gastro.2015.11.040.
- 40 Ebigbo A, Mendel R, Probst A. et al. Real-time use of artificial intelligence in the evaluation of cancer in Barrett’s oesophagus. Gut 2020; 69: 615-616 DOI: 10.1136/gutjnl-2019-319460.
- 41 Hashimoto R, Requa J, Dao T. et al. Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett’s esophagus (with video). Gastrointest Endosc 2020; S0016510720300262 DOI: 10.1016/j.gie.2019.12.049.
- 42 de Groof AJ, Struyvenberg MR, Fockens KN. et al. Deep learning algorithm detection of Barrett’s neoplasia with high accuracy during live endoscopic procedures: a pilot study (with video). Gastrointest Endosc 2020; S0016510720300146 DOI: 10.1016/j.gie.2019.12.048.
- 43 Lui TKL, Tsui VWM, Leung WK. Accuracy of artificial intelligence-assisted detection of upper GI lesions: a systematic review and meta-analysis. Gastrointest Endosc 2020; 92: 821-830.e9 DOI: 10.1016/j.gie.2020.06.034.
- 44 Sharma P, Shaheen NJ, Katzka D. et al. AGA clinical practice update on endoscopic treatment of Barrett’s esophagus with dysplasia and/or early cancer: Expert review. Gastroenterology 2020; 158: 760-769 DOI: 10.1053/j.gastro.2019.09.051.
- 45 Wagner A, Zandanell S, Kiesslich T. et al. Systematic review on optical diagnosis of early gastrointestinal neoplasia. J Clin Med 2021; 10: 2794 DOI: 10.3390/jcm10132794.
- 46 de Groof AJ, Struyvenberg MR, van der Putten J. et al. Deep-learning system detects neoplasia in patients with Barrett’s esophagus with higher accuracy than endoscopists in a multistep training and validation study with benchmarking. Gastroenterology 2020; 158: 915-929.e4 DOI: 10.1053/j.gastro.2019.11.030.
- 47 Ebigbo A, Mendel R, Rückert T. et al. Endoscopic prediction of submucosal invasion in Barrett’s cancer with the use of artificial intelligence: a pilot study. Endoscopy 2021; 53: 878-883 DOI: 10.1055/a-1311-8570.
- 48 Pimentel-Nunes P, Libânio D, Marcos-Pinto R. et al. Management of epithelial precancerous conditions and lesions in the stomach (MAPS II): European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter and Microbiota Study Group (EHMSG), European Society of Pathology (ESP), and Sociedade Portuguesa de Endoscopia Digestiva (SPED) guideline update 2019. Endoscopy 2019; 51: 365-388 DOI: 10.1055/a-0859-1883.
- 49 Areia M, Carvalho R, Cadime AT. et al. Screening for gastric cancer and surveillance of premalignant lesions: a systematic review of cost-effectiveness studies. Helicobacter 2013; 18: 325-337 DOI: 10.1111/hel.12050.
- 50 Areia M, Spaander MC, Kuipers EJ. et al. Endoscopic screening for gastric cancer: A cost-utility analysis for countries with an intermediate gastric cancer risk. United Eur Gastroenterol J 2018; 6: 192-202 DOI: 10.1177/2050640617722902.
- 51 Zhou HJ, Dan YY, Naidoo N. et al. A cost-effectiveness analysis evaluating endoscopic surveillance for gastric cancer for populations with low to intermediate risk. PloS One 2013; 8: e83959 DOI: 10.1371/journal.pone.0083959.
- 52 Rugge M, Genta RM, Fassan M. et al. OLGA gastritis staging for the prediction of gastric cancer risk: A long-term follow-up study of 7436 patients. Am J Gastroenterol 2018; 113: 1621-1628 DOI: 10.1038/s41395-018-0353-8.
- 53 Lee JWJ, Zhu F, Srivastava S. et al. Severity of gastric intestinal metaplasia predicts the risk of gastric cancer: a prospective multicentre cohort study (GCEP). Gut 2022; 71: 854-863 DOI: 10.1136/gutjnl-2021-324057.
- 54 Esposito G, Pimentel-Nunes P, Angeletti S. et al. Endoscopic grading of gastric intestinal metaplasia (EGGIM): a multicenter validation study. Endoscopy 2019; 51: 515-521 DOI: 10.1055/a-0808-3186.
- 55 Guimarães P, Keller A, Fehlmann T. et al. Deep-learning based detection of gastric precancerous conditions. Gut 2020; 69: 4-6 DOI: 10.1136/gutjnl-2019-319347.
- 56 Pimentel-Nunes P, Libânio D, Bastiaansen BAJ. et al. Endoscopic submucosal dissection for superficial gastrointestinal lesions: European Society of Gastrointestinal Endoscopy (ESGE) Guideline – Update 2022. Endoscopy 2022; 54: 591-622 DOI: 10.1055/a-1811-7025.
- 57 Gotoda T, Yanagisawa A, Sasako M. et al. Incidence of lymph node metastasis from early gastric cancer: estimation with a large number of cases at two large centers. Gastric Cancer 2000; 3: 219-225 DOI: 10.1007/pl00011720.
- 58 Kim EH, Park JC, Song IJ. et al. Prediction model for non-curative resection of endoscopic submucosal dissection in patients with early gastric cancer. Gastrointest Endosc 2017; 85: 976-983 DOI: 10.1016/j.gie.2016.10.018.
- 59 Ponte A, Pinho R, Rodrigues A. et al. Review of small-bowel cleansing scales in capsule endoscopy: A panoply of choices. World J Gastrointest Endosc 2016; 8: 600-609 DOI: 10.4253/wjge.v8.i17.600.
- 60 Nam JH, Oh DJ, Lee S. et al. Development and verification of a deep learning algorithm to evaluate small-bowel preparation quality. Diagn Basel Switz 2021; 11: 1127 DOI: 10.3390/diagnostics11061127.
- 61 Nam JH, Hwang Y, Oh DJ. et al. Development of a deep learning-based software for calculating cleansing score in small bowel capsule endoscopy. Sci Rep 2021; 11: 4417 DOI: 10.1038/s41598-021-81686-7.
- 62 Abou AliE, Histace A, Camus M. et al. Development and validation of a computed assessment of cleansing score for evaluation of quality of small-bowel visualization in capsule endoscopy. Endosc Int Open 2018; 6: E646-E651 DOI: 10.1055/a-0581-8758.
- 63 Klein A, Gizbar M, Bourke MJ. et al. Validated computed cleansing score for video capsule endoscopy. Dig Endosc Off J Jpn Gastroenterol Endosc Soc 2016; 28: 564-569 DOI: 10.1111/den.12599.
- 64 Leenhardt R, Souchaud M, Houist G. et al. A neural network-based algorithm for assessing the cleanliness of small bowel during capsule endoscopy. Endoscopy 2021; 53: 932-936 DOI: 10.1055/a-1301-3841.
- 65 Noorda R, Nevárez A, Colomer A. et al. Automatic evaluation of degree of cleanliness in capsule endoscopy based on a novel CNN architecture. Sci Rep 2020; 10: 17706 DOI: 10.1038/s41598-020-74668-8.
- 66 Spada C, McNamara D, Despott EJ. et al. Performance measures for small-bowel endoscopy: a European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative. Endoscopy 2019; 51: 574-598 DOI: 10.1055/a-0889-9586.
- 67 Dimas G, Spyrou E, Iakovidis DK. et al. Intelligent visual localization of wireless capsule endoscopes enhanced by color information. Comput Biol Med 2017; 89: 429-440 DOI: 10.1016/j.compbiomed.2017.08.029.
- 68 Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis 2004; 60: 91-110 DOI: 10.1023/B:VISI.0000029664.99615.94.
- 69 Enns RA, Hookey L, Armstrong D. et al. Clinical practice guidelines for the use of video capsule endoscopy. Gastroenterology 2017; 152: 497-514 DOI: 10.1053/j.gastro.2016.12.032.
- 70 Sidhu R, Chetcuti ZammitS, Baltes P. et al. Curriculum for small-bowel capsule endoscopy and device-assisted enteroscopy training in Europe: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy 2020; 52: 669-686 DOI: 10.1055/a-1185-1289.
- 71 Soffer S, Klang E, Shimon O. et al. Deep learning for wireless capsule endoscopy: a systematic review and meta-analysis. Gastrointest Endosc 2020; 92: 831-839.e8 DOI: 10.1016/j.gie.2020.04.039.
- 72 Dray X, Iakovidis D, Houdeville C. et al. Artificial intelligence in small bowel capsule endoscopy – current status, challenges and future promise. J Gastroenterol Hepatol 2021; 36: 12-19 DOI: 10.1111/jgh.15341.
- 73 Qin K, Li J, Fang Y. et al. Convolution neural network for the diagnosis of wireless capsule endoscopy: a systematic review and meta-analysis. Surg Endosc 2022; 36: 16-31 DOI: 10.1007/s00464-021-08689-3.
- 74 Ding Z, Shi H, Zhang H. et al. Gastroenterologist-level identification of small-bowel diseases and normal variants by capsule endoscopy using a deep-learning model. Gastroenterology 2019; 157: 1044-1054 DOI: 10.1053/j.gastro.2019.06.025.
- 75 Aoki T, Yamada A, Kato Y. et al. Automatic detection of various abnormalities in capsule endoscopy videos by a deep learning-based system: a multicenter study. Gastrointest Endosc 2021; 93: 165-173 DOI: 10.1016/j.gie.2020.04.080.
- 76 Mascarenhas Saraiva MJ, Afonso J, Ribeiro T. et al. Deep learning and capsule endoscopy: automatic identification and differentiation of small bowel lesions with distinct haemorrhagic potential using a convolutional neural network. BMJ Open Gastroenterol 2021; 8: e000753 DOI: 10.1136/bmjgast-2021-000753.
- 77 Piccirelli S, Milluzzo SM, Bizzotto A. et al. Small bowel capsule endoscopy and artificial intelligence: First or second reader?. Best Pract Res Clin Gastroenterol 2021; 52–53: 101742 DOI: 10.1016/j.bpg.2021.101742.
- 78 Parmar R, Martel M, Rostom A. et al. Validated scales for colon cleansing: A systematic review. Am J Gastroenterol 2016; 111: 197-204 quiz 205 DOI: 10.1038/ajg.2015.417.
- 79 Zhou J, Wu L, Wan X. et al. A novel artificial intelligence system for the assessment of bowel preparation (with video). Gastrointest Endosc 2020; 91: 428-435.e2 DOI: 10.1016/j.gie.2019.11.026.
- 80 Lai EJ, Calderwood AH, Doros G. et al. The Boston bowel preparation scale: a valid and reliable instrument for colonoscopy-oriented research. Gastrointest Endosc 2009; 69: 620-625 DOI: 10.1016/j.gie.2008.05.057.
- 81 Yao L, Zhang L, Liu J. et al. Effect of an artificial intelligence-based quality improvement system on efficacy of a computer-aided detection system in colonoscopy: a four-group parallel study. Endoscopy 2021; DOI: 10.1055/a-1706-6174.
- 82 Gong D, Wu L, Zhang J. et al. Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study. Lancet Gastroenterol Hepatol 2020; 5: 352-361 DOI: 10.1016/S2468-1253(19)30413-3.
- 83 Lee RH, Tang RS, Muthusamy VR. et al. Quality of colonoscopy withdrawal technique and variability in adenoma detection rates (with videos). Gastrointest Endosc 2011; 74: 128-134 DOI: 10.1016/j.gie.2011.03.003.
- 84 Corley DA, Jensen CD, Marks AR. et al. Adenoma detection rate and risk of colorectal cancer and death. N Engl J Med 2014; 370: 1298-1306 DOI: 10.1056/NEJMoa1309086.
- 85 Kaminski MF, Regula J, Kraszewska E. et al. Quality indicators for colonoscopy and the risk of interval cancer. N Engl J Med 2010; 362: 1795-1803 DOI: 10.1056/NEJMoa0907667.
- 86 Kaminski MF, Thomas-Gibson S, Bugajski M. et al. Performance measures for lower gastrointestinal endoscopy: a European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative. Endoscopy 2017; 49: 378-397 DOI: 10.1055/s-0043-103411.
- 87 Urban G, Tripathi P, Alkayali T. et al. Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy. Gastroenterology 2018; 155: 1069-1078 DOI: 10.1053/j.gastro.2018.06.037.
- 88 Hassan C, Wallace MB, Sharma P. et al. New artificial intelligence system: first validation study versus experienced endoscopists for colorectal polyp detection. Gut 2020; 69: 799-800 DOI: 10.1136/gutjnl-2019-319914.
- 89 Misawa M, Kudo S-E, Mori Y. et al. Artificial intelligence-assisted polyp detection for colonoscopy: initial experience. Gastroenterology 2018; 154: 2027-2029.e3 DOI: 10.1053/j.gastro.2018.04.003.
- 90 Hassan C, Badalamenti M, Maselli R. et al. Computer-aided detection-assisted colonoscopy: classification and relevance of false positives. Gastrointest Endosc 2020; DOI: 10.1016/j.gie.2020.06.021.
- 91 Repici A, Badalamenti M, Maselli R. et al. Efficacy of real-time computer-aided detection of colorectal neoplasia in a randomized trial. Gastroenterology 2020; 159: 512-520.e7 DOI: 10.1053/j.gastro.2020.04.062.
- 92 Wang P, Berzin TM, Glissen Brown JR. et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut 2019; 68: 1813-1819 DOI: 10.1136/gutjnl-2018-317500.
- 93 Wang P, Liu X, Berzin TM. et al. Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study. Lancet Gastroenterol Hepatol 2020; 5: 343-351 DOI: 10.1016/S2468-1253(19)30411-X.
- 94 Liu W-N, Zhang Y-Y, Bian X-Q. et al. Study on detection rate of polyps and adenomas in artificial-intelligence-aided colonoscopy. Saudi J Gastroenterol 2020; 26: 13 DOI: 10.4103/sjg.SJG_377_19.
- 95 Su J-R, Li Z, Shao X-J. et al. Impact of a real-time automatic quality control system on colorectal polyp and adenoma detection: a prospective randomized controlled study (with videos). Gastrointest Endosc 2020; 91: 415-424.e4 DOI: 10.1016/j.gie.2019.08.026.
- 96 Wang P, Liu P, Glissen Brown JR. et al. Lower adenoma miss rate of computer-aided detection-assisted colonoscopy vs routine white-light colonoscopy in a prospective tandem study. Gastroenterology 2020; DOI: 10.1053/j.gastro.2020.06.023.
- 97 Wallace MB, Sharma P, Bhandari P. et al. Impact of artificial intelligence on miss rate of colorectal neoplasia. Gastroenterology 2022; 295-304 DOI: 10.1053/j.gastro.2022.03.007.
- 98 Kamba S, Tamai N, Saitoh I. et al. Reducing adenoma miss rate of colonoscopy assisted by artificial intelligence: a multicenter randomized controlled trial. J Gastroenterol 2021; 56: 746-757 DOI: 10.1007/s00535-021-01808-w.
- 99 Glissen Brown JR, Mansour NM, Wang P. et al. Deep learning computer-aided polyp detection reduces adenoma miss rate: a United States multi-center randomized tandem colonoscopy study (CADeT-CS Trial). Clin Gastroenterol Hepatol 2022; 20: 1499-1507.e4 DOI: 10.1016/j.cgh.2021.09.009.
- 100 Repici A, Spadaccini M, Antonelli G. et al. Artificial intelligence and colonoscopy experience: lessons from two randomised trials. Gut 2021; DOI: 10.1136/gutjnl-2021-324471.
- 101 Hassan C, Spadaccini M, Iannone A. et al. Performance of artificial intelligence for colonoscopy regarding adenoma and polyp detection: a meta-analysis. Gastrointest Endosc 2020; DOI: 10.1016/j.gie.2020.06.059.
- 102 Barua I, Vinsard D, Jodal H. et al. Artificial intelligence for polyp detection during colonoscopy: A systematic review and meta-analysis. Endoscopy 2020; DOI: 10.1055/a-1201-7165.
- 103 Spadaccini M, Hassan C, Alfarone L. et al. Comparing the number and relevance of false activations between 2 artificial intelligence computer-aided detection systems: the NOISE study. Gastrointest Endosc 2022; 95: 975-981.e1 DOI: 10.1016/j.gie.2021.12.031.
- 104 Gupta N, Bansal A, Rao D. et al. Prevalence of advanced histological features in diminutive and small colon polyps. Gastrointest Endosc 2012; 75: 1022-1030 DOI: 10.1016/j.gie.2012.01.020.
- 105 Greuter MJE, de Klerk CM, Meijer GA. et al. Screening for colorectal cancer with fecal immunochemical testing with and without postpolypectomy surveillance colonoscopy: A cost-effectiveness analysis. Ann Intern Med 2017; 167: 544-554 DOI: 10.7326/M16-2891.
- 106 Krzeczewski B, Hassan C, Krzeczewska O. et al. Cost-effectiveness of colonoscopy in an organized screening program. Pol Arch Intern Med 2021; 131: 128-135 DOI: 10.20452/pamw.15779.
- 107 Lansdorp-Vogelaar I, Knudsen A, Brenner H. Cost-effectiveness of colorectal cancer screening – an overview. Best Pract Res Clin Gastroenterol 2010; 24: 439-449 DOI: 10.1016/j.bpg.2010.04.004.
- 108 Gordon IO, Sherman JD, Leapman M. et al. Life cycle greenhouse gas emissions of gastrointestinal biopsies in a surgical pathology laboratory. Am J Clin Pathol 2021; 156: 540-549.1 DOI: 10.1093/ajcp/aqab021.
- 109 Mori Y, Kudo S-E, East JE. et al. Cost savings in colonoscopy with artificial intelligence-aided polyp diagnosis: an add-on analysis of a clinical trial (with video). Gastrointest Endosc 2020; 92: 905-911.e1 DOI: 10.1016/j.gie.2020.03.3759.
- 110 Hassan C, Pickhardt PJ, Rex DK. A resect and discard strategy would improve cost-effectiveness of colorectal cancer screening. Clin Gastroenterol Hepatol 2010; 8: 865-869.e3 DOI: 10.1016/j.cgh.2010.05.018.
- 111 Vu HT, Sayuk GS, Hollander TG. et al. Resect and discard approach to colon polyps: real-world applicability among academic and community gastroenterologists. Dig Dis Sci 2015; 60: 502-508 DOI: 10.1007/s10620-014-3376-z.
- 112 Rex DK, Kahi C, O’Brien M. et al. The American Society for Gastrointestinal Endoscopy PIVI (Preservation and Incorporation of Valuable Endoscopic Innovations) on real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc 2011; 73: 419-422 DOI: 10.1016/j.gie.2011.01.023.
- 113 Houwen BBSL, Hassan C, Coupé VMH. et al. Definition of competence standards for optical diagnosis of diminutive colorectal polyps: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy 2022; 54: 88-99 DOI: 10.1055/a-1689-5130.
- 114 Mori Y, Kudo S-E, Misawa M. et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy: A prospective study. Ann Intern Med 2018; 169: 357-366 DOI: 10.7326/M18-0249.
- 115 Barua I, Wieszczy P, Kudo S. et al. Real-time artificial intelligence–based optical diagnosis of neoplastic polyps during colonoscopy. NEJM Evid 2022; 1 DOI: 10.1056/EVIDoa2200003.
- 116 Hassan C, Balsamo G, Lorenzetti R. et al. Artificial intelligence allows leaving-in-situ colorectal polyps. Clin Gastroenterol Hepatol 2022; 11 DOI: 10.1016/j.cgh.2022.04.045.
- 117 Rondonotti E, Hassan C, Tamanini G. et al. Artificial intelligence assisted optical diagnosis for resect and discard strategy in clinical practice (Artificial intelligence BLI Characterization; ABC study). Endoscopy 2022; DOI: 10.1055/a-1852-0330.
- 118 Burgess NG, Hourigan LF, Zanati SA. et al. Risk stratification for covert invasive cancer among patients referred for colonic endoscopic mucosal resection: A large multicenter cohort. Gastroenterology 2017; 153: 732-742 DOI: 10.1053/j.gastro.2017.05.047.