Synlett 2023; 34(12): 1409-1414
DOI: 10.1055/a-1954-3236
cluster
Special Issue Honoring Masahiro Murakami’s Contributions to Science

Alkenylboronic Ester Activation to Nucleophilic Addition and Electrophilic Trapping with Carbonyl Groups

Sara González
,
Elena Fernández
We are grateful for funding from the Ministerio de Economía y Competitividad y por el Fondo Europeo de Desarrollo Regional FEDER (project PID2019-109674GB-I00). S.G. is grateful for an FI grant.


Dedicated to Professor Masahiro Murakami for his inspiring research career

Abstract

Carbolithiation of (1-phenylvinyl)boronic acid pinacol ester with tert-butyllithium was used to generate α-phenylboryl carbanions that reacted in a straightforward manner with carbonyl groups through a boron–Wittig sequence. When unhindered α,β-unsaturated carbonyl compounds were used, 1,4-addition of the α-phenylboryl carbanions was observed over the boron–Wittig sequence.

Supporting Information



Publication History

Received: 02 September 2022

Accepted after revision: 30 September 2022

Accepted Manuscript online:
30 September 2022

Article published online:
02 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Carreras J, Caballero A, Pérez PJ. Chem. Asian J. 2019; 14: 329
  • 2 Miyaura N, Satoh M, Suzuki A. Tetrahedron Lett. 1986; 27: 3745
    • 3a Brown HC, Lane CF. J. Am. Chem. Soc. 1970; 92: 7212
    • 3b Brown HC, Lane CF. J. Am. Chem. Soc. 1971; 93: 1025
    • 3c Lane CF, Brown HC. Synthesis 1972; 303
  • 4 Chierchia M, Xu P, Lovinger GJ, Morken JP. Angew. Chem. Int. Ed. 2019; 58: 14245
  • 5 Wang X.-X, Lu X, He S.-J, Fu Y. Chem. Sci. 2020; 11: 7950
  • 6 Campbell MW, Compton JS, Kelly CB, Molander GA. J. Am. Chem. Soc. 2019; 141: 20069
  • 7 García-Domínguez A, Mondal R, Nevado C. Angew. Chem. Int. Ed. 2019; 58: 12286
  • 8 Mega RS, Duong VK, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2020; 59: 4375
  • 9 Sun S.-Z, Duan Y, Mega RS, Somerville RJ, Martin R. Angew. Chem. Int. Ed. 2020; 59: 4370
  • 10 Kischkewitz M, Okamoto K, Muck-Lichtenfeld C, Studer A. Science 2017; 355: 936
  • 11 Tappin ND. C, Gnägi-Lux M, Renaud P. Chem. Eur. J. 2018; 24: 11498
  • 12 Zhang L, Lovinger GJ, Edelstein EK, Szymaniak AA, Chierchia MP, Morken JP. Science 2016; 351: 70
  • 13 Silvi M, Sandford C, Aggarwal VK. J. Am. Chem. Soc. 2017; 139: 5736
  • 14 Brown HC, Dodson VH. J. Am. Chem. Soc. 1957; 79: 2302-2306
  • 15 Blount JF, Finocchiaro P, Gust D, Mislow K. J. Am. Chem. Soc. 1973; 95: 7019
  • 16 Glogwski E, Zumbulyadis N, Williams JL. R. J. Organomet. Chem. 1982; 231: 97
    • 17a Cooke MP. Jr, Widener RK. J. Am. Chem. Soc. 1987; 109: 931
    • 17b Cooke MP. Jr. J. Org. Chem. 1994; 59: 2930
    • 18a Nakamura M, Hara K, Hatakeyama T, Nakamura E. Org. Lett. 2001; 3: 3137
    • 18b Nakamura M, Hatakeyama T, Hara K, Fukudome H, Nakamura E. J. Am. Chem. Soc. 2004; 126: 14344-14345
  • 19 González S, Salvado O, Fernández E. Adv. Synth. Catal. 2022; 364: 1701
  • 20 Maza RJ, Carbó JJ, Fernández E. Adv. Synth. Catal. 2021; 363: 2274
  • 21 Maza RJ, Carbó JJ, Fernández E. Chem. Eur. J. 2021; 27: 12352
  • 22 Shimizu H, Igarashi T, Miura T, Murakami M. Angew. Chem. Int. Ed. 2011; 50: 11465
  • 23 Cuenca AB, Fernández E. Chem. Soc. Rev. 2021; 50: 72
  • 24 Salvado O, Fernández E. Chem. Commun. 2021; 57: 6300
  • 25 Palmer WN, Zarate C, Chirik PJ. J. Am. Chem. Soc. 2017; 139: 2589
  • 26 Kim C, Roh B, Lee HG. Chem. Sci. 2021; 12: 3668
  • 27 Jang WJ, Yun Y. Angew. Chem. Int. Ed. 2019; 58: 18131
  • 28 Liang MZ, Meek SJ. J. Am. Chem. Soc. 2020; 142: 9925
  • 29 Liang MZ, Meek SJ. Angew. Chem. Int. Ed. 2019; 58: 14234
  • 30 1,2-Dicarbofunctionalization through Boron–Wittig Olefination with Aldehydes or Ketones; General Method A flame-dried 100 mL round-bottomed flask equipped with a magnetic stirrer bar was charged with 4,4,5,5-tetramethyl-2-(1-phenylvinyl)-1,3,2-dioxaborolane (1) (69.5 mg, 0.3 mmol, 1.0 equiv) in dried THF (2 mL), then sealed with a rubber septum and placed under a N2 atmosphere at –78 °C. A 1.7 M solution of t-BuLi in hexane (0.19 mL, 0.33 mmol, 1.1 equiv) was added dropwise and the mixture was stirred for 30 min at –78 °C and then at rt for 16 h. The appropriate aldehyde or ketone (0.45 mmol, 1.5 equiv) was added dropwise and the mixture was stirred for 4 h at rt. Finally, the reaction was quenched with MeOH (5 mL) and the mixture was extracted with Et2O (×3). The combined organic layers were dried (MgSO4) filtered through Celite, and concentrated under reduced pressure. The NMR yield was calculated by comparison with an internal standard (naphthalene). The crude product was purified by flash column chromatography. [(1E/1Z)-1-(2,2-Dimethylpropyl)-3-methylbut-1-en-1-yl]benzene (2) Purified by flash column chromatography [silica gel, pentane–EtOAc, (100:0)] to give a colorless liquid; yield: 45.3 mg (70%, E/Z = 1:1). 1H NMR (400 MHz, CDCl3): δ = 7.34–7.25 (m, 6 H), 7.25–7.17 (m, 4 H), 5.41 (d, J = 10.0 Hz, 1 H), 5.24 (d, J = 10.1 Hz, 1 H), 2.68 (m, 1 H), 2.50 (s, 2 H), 2.43 (m, 1 H), 2.31 (s, 2 H), 1.03 (d, J = 6.5 Hz, 6 H), 0.95 (d, J = 6.6 Hz, 6 H), 0.79 (s, 9 H), 0.76 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ = 145.7, 142.4, 139.5, 138.1, 135.7, 135.5, 128.1, 127.4, 127.2, 126.3, 125.5, 125.5, 52.6, 41.9, 31.8, 31.4, 29.9, 29.5, 27.7, 27.2, 23.0, 22.5. HRMS (ESI): m/z [M + H]+ calcd for C16H25: 217.1956; found: 217.1953.