Synlett 2023; 34(09): 1068-1074
DOI: 10.1055/a-2002-4122
letter

Gold-Catalyzed Formal (3+2) Cycloaddition in an Ionic Liquid: Environmentally Friendly and Stereoselective Synthesis of Polysubstituted Indanes from Benzylic Alcohols and 1-Phenylpropenes

Nobuyoshi Morita
,
Hitomi Chiaki
,
Kanae Ikeda
,
Kosaku Tanaka III
,
Yoshimitsu Hashimoto
,
Osamu Tamura
This work was financially supported by the JSPS KAKENHI (grant number 20 K05517).


Abstract

A gold-catalyzed formal (3+2) cycloaddition of benzylic alcohols with 1-phenylpropenes in an ionic liquid permits the environmentally friendly stereoselective synthesis of polysubstituted indanes in good yields and with high selectivity. The gold catalyst can be recycled at least five times.

Supporting Information



Publication History

Received: 30 November 2022

Accepted after revision: 20 December 2022

Accepted Manuscript online:
21 December 2022

Article published online:
19 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Vilums M, Heuberger J, Heitman LH, IJzerman AP. Med. Res. Rev. 2015; 35: 1097
    • 2a Cui H, Liu Y, Li J, Huang X, Yan T, Cao W, Liu H, Long Y, She Z. J. Org. Chem. 2018; 83: 11804
    • 2b Liu H.-B, Liu Z.-M, Chen Y.-C, Tan H.-B, Li S.-N, Li D.-L, Liu H.-X, Zhang W.-M. Chin. J. Nat. Med. 2021; 19: 874
    • 3a Saxena DB. Phytochemistry 1986; 25: 553
    • 3b Zanoli P, Avallone R, Baraldi M. Phytother. Res. 1998; 12: S114
    • 3c Jasicka-Misiak I, Lipok J, Moliszewska E. Chem. Inz. Ekol. 1999; 6: 149
    • 4a Elliot JD, Lago MA, Cousins RD, Gao A, Leber JD, Erhard KF, Nambi P, Elshourbagy NA, Kumar C, Lee JA, Bean JW, DeBrosse CW, Eggleston DS, Brooks DP, Feuerstein G, Ruffolo RR. Jr, Weinstock J, Gleason JG, Peishoff CE, Ohlstein EH. J. Med. Chem. 1994; 37: 1553
    • 4b Ohlstein EH, Nambi P, Lago A, Hay DW. P, Beck G, Fong K.-L, Eddy EP, Smith P, Ellens H, Elliott JD. J. Pharmacol. Exp. Ther. 1996; 276: 609
    • 5a Clark WM, Tickner-Eldridge AM, Huang GK, Pridgen LN, Olsen MA, Millis RJ, Lantos I, Baine NH. J. Am. Chem. Soc. 1998; 120: 4550
    • 5b Pridgen LN, Huang GK. Tetrahedron Lett. 1998; 39: 8421
    • 5c Itoh T, Mase T, Nishikata T, Iyama T, Tachikawa H, Kobayashi Y, Yamamoto Y, Miyaura N. Tetrahedron 2006; 62: 9610
    • 5d Kim H, Yun J. Adv. Synth. Catal. 2010; 352: 1881
    • 6a Borie C, Ackermann L, Nechab M. Chem. Soc. Rev. 2016; 45: 1368
    • 6b Gabriele B, Mancuso R, Veltri L. Chem. Eur. J. 2016; 22: 5056
    • 7a Angle SR, Arnaiz DO. J. Org. Chem. 1990; 55: 3708
    • 7b Navarro C, Csákÿ AG. Org. Lett. 2008; 10: 217
    • 7c Watson MP, Jacobsen EN. J. Am. Chem. Soc. 2008; 130: 12594
    • 7d Yuan H, Hu J, Gong Y. Tetrahedron: Asymmetry 2013; 24: 699
    • 7e Zhu M, Liu J, Yu J, Chen L, Zhang C, Wang L. Org. Lett. 2014; 16: 1856
    • 7f Wang Y, Wu X, Chi YR. Chem. Commun. 2017; 53: 11952
    • 7g Arredondo V, Roa DE, Gutman ES, Huynh NO, Van Vranken DL. J. Org. Chem. 2019; 84: 14745
    • 7h Chang M.-Y, Wu Y.-S, Tsai Y.-L, Chen H.-Y. J. Org. Chem. 2019; 84: 11699
    • 7i Gao Z, Ren L, Wang R, Shi L, Wang Y, Su F, Hao H.-D. Org. Lett. 2021; 23: 5684
    • 8a MacMillan J, Martin IL, Morris DJ. Tetrahedron 1969; 25: 905
    • 8b Al-Farhan E, Keehn PM, Stevenson R. J. Chem. Res., Synop. 1992; 36
    • 8c Al-Farhan E, Keehn PM, Stevenson R. J. Chem. Res., Synop. 1992; 100
    • 8d Benito A, Corma A, García H, Primo J. Appl. Catal., A 1994; 116: 127
    • 8e Alesso EN, Aguirre J, Lantaño B, Finkielsztein L, Moltrasio GY, Vázquez PG, Pizzio LR, Caceres C, White M, Thomas HJ. Molecules 2000; 5: 414
    • 8f Madhavan D, Murugalakshmi M, Lalitha A, Pitchumani K. Catal. Lett. 2001; 73: 1
    • 8g Alesso E, Torviso R, Erlich M, Finkielsztein L, Lantaño B, Moltrasio G, Aguirre J, Vázquez P, Pizzio L, Cáceres C, Blanco M, Thomas H. Synth. Commun. 2002; 32: 3803
    • 8h Alvarez-Thon L, Carrasco-Altamirano H, Espinoza-Catalán L, Gallardo-Araya C, Cardona-Villada W, Ibañez A. Acta Crystallogr., Sect. E: Struct. Rep. Online 2006; 62: o2000
    • 8i Kouznetsov VV, Merchan Arenas DR. Tetrahedron Lett. 2009; 50: 1546
    • 8j Grigor’eva NG, Talipova RR, Korzhova LF. Vosmerikov A. V, Kutepov BI, Dzhemilev UM. Russ. Chem. Bull. 2009; 58: 59
    • 8k Davis MC, Guenthner AJ, Groshens TJ, Reams JT, Mabry JM. J. Polym. Sci. Part A: Polym. Chem. 2012; 50: 4127
    • 8l Gonzalez-de-Castro A, Xiao J. J. Am. Chem. Soc. 2015; 137: 8206
    • 8m Nomura E, Noda T, Gomi D, Mori H. ACS Omega 2018; 3: 12746
    • 9a Angle SR, Arnaiz DO. J. Org. Chem. 1992; 57: 5937
    • 9b Alesso E, Torviso R, Lantaño B, Erlich M, Finkielsztein LM, Moltrasio G, Aguirre JM, Brunet E. ARKIVOC 2003; (x): 283
    • 9c Lantaño B, Aguirre JM, Finkielsztein L, Alesso EN, Brunet E, Moltrasio GY. Synth. Commun. 2004; 34: 625
    • 9d Pizzio LR, Vázquez PG, Cáceres CV, Blanco MN, Alesso EN, Torviso MR, Lantaño B, Moltrasio GY, Aguirre JM. Appl. Catal., A 2005; 287: 1
    • 9e Lantaño B, Aguirre JM, Ugliarolo EA, Benegas ML, Moltrasio GY. Tetrahedron 2008; 64: 4090
    • 9f Lantaño B, Aguirre JM, Ugliarolo EA, Torviso R, Pomilio N, Moltrasio GY. Tetrahedron 2012; 68: 913
    • 9g Li H.-H. Chin. Chem. Lett. 2015; 26: 320
    • 9h Li Y, Zhang L, Zhang Z, Xu J, Pan Y, Xu C, Liu L, Li Z, Yu Z, Li H, Xu L. Adv. Synth. Catal. 2016; 358: 2148
    • 9i Sai M. Eur. J. Org. Chem. 2019; 1102
    • 9j Yang B, Dong K, Li X.-S, Wu L.-Z, Liu Q. Org. Lett. 2022; 24: 2040
    • 10a Olivero S, Perriot R, Duñach E, Baru AR, Bell ED, Mohan RS. Synlett 2006; 2021
    • 10b Sarnpitak P, Trongchit K, Kostenko Y, Sathalalai S, Gleeson MP, Ruchirawat S, Ploypradith P. J. Org. Chem. 2013; 78: 8281
    • 10c Iakovenko RO, Chicca A, Nieri D, Reynoso-Moreno I, Gertsch J, Krasavin M, Vasilyev AV. Tetrahedron 2019; 75: 624
  • 11 Morita N, Mashiko R, Hakuta D, Eguchi D, Ban S, Hashimoto Y, Okamoto I, Tamura O. Synthesis 2016; 48: 1927
  • 12 Morita N, Ikeda K, Chiaki H, Araki R, Tanaka KIII, Hashimoto Y, Tamura O. Heterocycles 2021; 103: 714
    • 13a Morita N, Yasuda A, Shibata M, Ban S, Hashimoto Y, Okamoto I, Tamura O. Org. Lett. 2015; 17: 2668
    • 13b Morita N, Tsunokake T, Narikiyo Y, Harada M, Tachibana T, Saito Y, Ban S, Hashimoto Y, Okamoto I, Tamura O. Tetrahedron Lett. 2015; 56: 6269
    • 13c Morita N, Saito Y, Muraji A, Ban S, Hashimoto Y, Okamoto I, Tamura O. Synlett 2016; 27: 1936
    • 13d Morita N, Miyamoto M, Yoda A, Yamamoto M, Ban S, Hashimoto Y, Tamura O. Tetrahedron Lett. 2016; 57: 4460
    • 13e Morita N, Oguro K, Takahashi S, Kawahara M, Ban S, Hashimoto Y, Tamura O. Heterocycles 2017; 95: 172
    • 13f Morita N, Sano A, Sone A, Aonuma S, Matsunaga A, Hashimoto Y, Tamura O. Heterocycles 2018; 97: 719
    • 14a Liu X, Pan Z, Shu X, Duan X, Liang Y. Synlett 2006; 1962
    • 14b Ambrogio I, Arcadi A, Cacchi S, Fabrizi G, Marinelli F. Synlett 2007; 1775
    • 14c Aksın Ö, Krause N. Adv. Synth. Catal. 2008; 350: 1106
    • 14d Corma A, Domínguez I, Ródenas T, Sabater MJ. J. Catal. 2008; 259: 26
    • 14e Neaţu F, Pârvulescu VI, Michelet V, Gênet J.-P, Goguet A, Hardacre C. New J. Chem. 2009; 33: 102
    • 14f Moreau X, Hours A, Fensterbank L, Goddard J.-P, Malacria M, Thorimbert S. J. Organomet. Chem. 2009; 694: 561
    • 14g Cui D.-M, Ke Y.-N, Zhuang D.-W, Wang Q, Zhang C. Tetrahedron Lett. 2010; 51: 980
    • 14h Lempke L, Fischer T, Bell J, Kraus W, Rurack K, Krause N. Org. Biomol. Chem. 2015; 13: 3787
    • 14i Lempke L, Sak H, Kubicki M, Krause N. Org. Chem. Front. 2016; 3: 1514
    • 14j Baron M, Biffis A. Eur. J. Org. Chem. 2019; 3687
  • 15 CCDC 2223306 contains the supplementary crystallographic data for compound 3aa. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 16a Song CE, Shim WH, Roh EJ, Choi JH. Chem. Commun. 2000; 1695
    • 16b Song CE, Shim WH, Roh EJ, Lee S.-g, Choi JH. Chem. Commun. 2001; 1122
    • 16c Song CE, Jung D.-u, Choung SY, Roh EJ, Lee S.-g. Angew. Chem. Int. Ed. 2004; 43: 6183
    • 16d Kim JH, Lee JW, Shin US, Lee JY, Lee S.-g, Song CE. Chem. Commun. 2007; 4683
    • 16e Park BY, Ryu KY, Park JH, Lee S.-g. Green Chem. 2009; 11: 946
    • 16f Lee JW, Shin JY, Chun YS, Jang HB, Song CE, Lee S.-g. Acc. Chem. Res. 2010; 43: 985
    • 17a Herrmann WA, Elison M, Fischer J, Köcher C, Artus GR. J. Angew. Chem. Int. Ed. 1995; 34: 2371
    • 17b Xu L, Chen W, Xiao J. Organometallics 2000; 19: 1123
    • 17c McGuinness DS, Cavell KJ, Yates BF. Chem. Commun. 2001; 355
    • 17d Mathews CJ, Smith PJ, Welton T, White AJ. P, Williams DJ. Organometallics 2001; 20: 3848
    • 17e Clement ND, Cavell KJ. Angew. Chem. Int. Ed. 2004; 43: 3845
  • 18 There are four possible diastereomers for 1,2,3-trisubstituted indanes 4, namely, α-(1,2-cis-2,3-trans), β-(1,2-cis-2,3-cis), γ-(1,2-trans-2,3-trans), and δ-(1,2-trans-2,3-cis), as shown below in Figure 4. The stereochemical assignment of the 1,2,3-trisubstituted indanes 4 was based on 1H NMR spectra, chemical shifts (ppm), coupling constants (J values), and the application of double-irradiation techniques. MacMillan et al. reported J values for the α-(1,2-cis-2,3-trans) and γ-(1,2-trans-2,3-trans) configurations of 1,2,3-trisubstituted indanes 4 (see ref. 8a). Lantaño et al. also reported similar chemical shifts (ppm) and coupling constants (J values) for the α-(1,2-cis-2,3-trans) and γ-(1,2-trans-2,3-trans) configurations of 1,2,3-trisubstituted indanes 4 (see ref. 9e).
  • 19 Ethyl (1R*,2S*,3S*)- and (1R*,2R*,3R*)-1-Ethyl-5,6-dimethoxy-3-(4-methoxyphenyl)indane-2-carboxylate (4gg and 4′gg) 1 mol% AuCl (1.2 mg, 0.0051 mmol) was added at rt to a solution of benzylic alcohol 1g (100 mg, 0.51 mmol) and ethyl trans-p-methoxycinnamate (2g) (315 mg, 1.53 mmol) in [EMIM][NTf2] (1 mL). When benzylic alcohol 1g was completely consumed (TLC; usually <30 min), the product was extracted with Et2O and the solvent was removed in vacuo. The crude product was purified by column chromatography (silica gel, hexane–EtOAc) to give 4gg and 4′gg as a colorless oil; yield: 158 mg (81%, 4:1). IR (KBr): 2958, 2933, 2833, 1728, 1609, 1510, 1500, 1463 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.18 (d, J = 8.7 Hz, 2 H × 4/5)*, 7.13 (d, J = 8.7 Hz, 2 H × 1/5), 6.88 (d, J = 8.7 Hz, 2 H × 1/5), 6.86 (d, J = 8.7 Hz, 2 H × 4/5)*, 6.78 (s, 1 H × 4/5)*, 6.75 (s, 1 H × 1/5), 6.41 (s, 1 H × 4/5)*, 6.38 (s, 1 H × 1/5), 4.75 (d, J = 9.9 Hz, 1 H × 4/5)*, 4.52 (d, J = 9.3 Hz, 1 H × 1/5), 4.16 (q, J = 7.2 Hz, 2 H × 4/5)*, 4.14 (q, J = 7.2 Hz, 2 H × 1/5), 3.91 (s, 3 H × 4/5)*, 3.91 (s, 3 H × 1/5), 3.83 (s, 3 H × 1/5), 3.81 (s, 3 H × 4/5)*, 3.74 (s, 3 H × 4/5)*, 3.73 (s, 3 H × 1/5), 3.52–3.45 (m, 1 H × 1/5), 3.41 (t, J = 8.1 Hz, 1 H × 4/5)*, 3.41–3.34 (m, 1 H × 4/5)*, 2.86 (t, J = 9.0 Hz, 1 H × 1/5), 2.09–1.98 (m, 1 H × 1/5), 1.80–1.50 (m, 2 H × 4/5)*, 1.27 (t, J = 7.2 Hz, 3 H × 4/5)*, 1.23 (t, J = 7.2 Hz, 3 H × 1/5), 0.99 (t, J = 7.5 Hz, 3 H × 1/5), 0.96 (t, J = 7.5 Hz, 3 H × 4/5)*. 13C NMR (75 MHz, CDCl3): δ = 175.0, 172.6*, 158.5, 158.4*, 148.8, 148.7*, 148.1*, 136.71*, 136.67*, 136.6, 136.2, 135.8, 135.5*, 129.7*, 129.3, 113.9, 113.8*, 108.1*, 107.8*, 107.7, 106.3, 60.7, 60.5, 60.3*, 60.2*, 56.1*, 56.0*, 55.2*, 53.9, 50.7*, 48.8, 47.7*, 26.5, 24.6*, 14.3*, 11.7*, 10.6. HRMS (EI): m/z [M+] calcd for C23H28O5: 384.1937; found: 384.1935.
  • 20 CCDC 2223279 contains the supplementary crystallographic data for compound 4gg. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 21 5,6-Dimethoxy-1-(4-methoxyphenyl)-2-methylindane (3aa); Enlarged-Scale Procedure 1 mol% AuCl (14 mg, 0.060 mmol) was added at rt to a solution of benzylic alcohol 1a (1.0 g, 6.0 mmol) and ethyl trans-anethole (2a) (0.88 g, 6.0 mmol) in [EMIM][NTf2] (5 mL). When benzylic alcohol 1a was completely consumed (TLC; usually <30 min), the product was extracted with Et2O and the solvent was removed in vacuo. The crude product was purified by column chromatography (silica gel, hexane–EtOAc) to give a colorless oil; yield: 1.3 g (73%). IR (KBr): 3033, 299, 2931, 2837, 1614, 1512, 1472, 1446, 1512, 1471, 1445, 1410, 1313, 1213, 1173, 1088, 1028, 995, 856, 820, 804, 764 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.11 (d, J = 8.7 Hz, 2 H), 6.87 (d, J = 8.7 Hz, 2 H), 6.79 (s, 1 H), 6.39 (s, 1 H), 3.88 (s, 3 H), 3.81 (s, 3 H), 3.72 (s, 3 H), 3.70 (d, J = 9.5 Hz, 1 H), 3.06 (dd, J = 14.9, 7.5 Hz, 1 H), 2.55 (dd, J = 14.9, 9.5 Hz, 1 H), 2.42–2.30 (m, 1 H), 1.17 (d, J = 6.6 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 158.2, 148.14, 148.07, 138.3, 136.4, 135.2, 129.4, 113.8, 108.1, 107.4, 58.9, 56.1, 56.1, 55.2, 46.9, 40.1, 18.4. HRMS (EI): m/z [M+] calcd for C19H22O3: 298.1569; found: 298.1569.
  • 22 In the recycling of the gold catalyst in this reaction, the reaction time was prolonged after the first cycle. The cause is assumed to be imidazole, which is a decomposition product generated when water produced during the reaction reacts with the ionic liquid in the presence of the gold catalyst.23 The generated imidazole might coordinate to the gold catalyst, significantly reducing its activity and prolonging the reaction time; however, this has not been confirmed.
  • 23 Vieira JC. B, Villetti MA, Frizzo CP. J. Mol. Liq. 2021; 330: 115618