Synlett 2023; 34(12): 1534-1538
DOI: 10.1055/a-2006-4548
cluster
Special Issue Honoring Masahiro Murakami’s Contributions to Science

Aminotetrazole Synthesis from Secondary Amides by C–C Bond Nitrogenation

Cheng Zhang
a   State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, P. R. of China
,
Jianzhong Liu
a   State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, P. R. of China
,
a   State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, P. R. of China
,
Junhua Li
a   State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, P. R. of China
,
Song Song
a   State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, P. R. of China
,
Ning Jiao
a   State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, P. R. of China
b   Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, P. R. of China
› Author Affiliations
We thank the National Key R&D Program of China (No. 2021YFA1501700), the NSFC (Nos. 22293014, 22131002, 21901012), and the Tencent Foundation for financial support.


Abstract

The development of novel methods for the preparation of aminotetrazoles is of long-standing interest to chemists due to the great importance of these compounds in chemistry and biology. Here, we report an efficient method for the preparation of aminotetrazoles from secondary amides by selective C–C bond cleavage. Compared with the conventional laborious and cumbersome approaches to aminotetrazoles, this chemistry provides a highly efficient nitrogenation strategy, with the installation of four nitrogen atoms into a secondary amide in one step.

Supporting Information



Publication History

Received: 07 December 2022

Accepted after revision: 03 January 2023

Accepted Manuscript online:
03 January 2023

Article published online:
15 February 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
    • 1b Eicher T, Hauptmann S, Speicher A. The Chemistry of Heterocycles: Structures, Reactions, Synthesis, and Applications, 3rd ed. Wiley–VCH; Weinheim: 2013
    • 1c Taylor AP, Robinson RP, Fobian YM, Blakemore DC, Jones LH, Fadeyi O. Org. Biomol. Chem. 2016; 14: 6611
    • 2a Peet NP, Baugh LE, Sunder S, Lewis JE, Matthews EH, Olberding EL, Shah DN. J. Med. Chem. 1986; 29: 2403
    • 2b Wu L. RSC Adv. 2015; 5: 24960
    • 2c Raju C, Madhaiyan K, Uma R, Sridhar R, Ramakrishna S. RSC Adv. 2012; 2: 11657
  • 3 Klich M, Teutsch G. Tetrahedron 1986; 42: 2677
  • 4 Finnegan WG, Henry RA, Lieber E. J. Org. Chem. 1953; 18: 779
  • 5 Percival DF, Herbst RM. J. Org. Chem. 2002; 22: 925
    • 6a Garbrecht WL, Herbst RM. J. Org. Chem. 1953; 18: 1014
    • 6b Motahharifar N, Nasrollahzadeh M, Taheri-Kafrani A, Varma RS, Shokouhimehr M. Carbohydr. Polym. 2020; 232: 115819
  • 7 Katritzky AR, Rogovoy BV, Kovalenko KV. J. Org. Chem. 2003; 68: 4941
  • 8 Guin S, Rout SK, Gogoi A, Nandi S, Ghara KK, Patel BK. Adv. Synth. Catal. 2012; 354: 2757
  • 9 Chaudhari PS, Pathare SP, Akamanchi KG. J. Org. Chem. 2012; 77: 3716
  • 10 Nimnual P, Tummatorn J, Boekfa B, Thongsornkleeb C, Ruchirawat S, Piyachat P, Punjajom K. J. Org. Chem. 2019; 84: 5603
  • 11 Li L.-H, Niu Z.-J, Li Y.-X, Liang Y.-M. Chem. Commun. 2018; 54: 11148
  • 12 Qin C, Su Y, Shen T, Shi X, Jiao N. Angew. Chem. Int. Ed. 2016; 55: 350

    • For selected reviews on C–C bond cleavage, see:
    • 13a Dermenci A, Coe JW, Dong G. Org. Chem. Front. 2014; 1: 567
    • 13b C–C Bond Activation . Dong G. Springer-Verlag; Berlin: 2014
    • 13c Jun C.-H. Chem. Soc. Rev. 2004; 33: 610
    • 13d Chen F, Wang T, Jiao N. Chem. Rev. 2014; 114: 8613
    • 13e Kim D.-S, Park W.-J, Jun C.-H. Chem. Rev. 2017; 117: 8977
    • 13f Souillart L, Cramer N. Chem. Rev. 2015; 115: 9410
    • 13g Fumagalli G, Stanton S, Bower JF. Chem. Rev. 2017; 117: 9404
    • 13h Liu H, Feng M, Jiang X. Chem. Asian J. 2014; 9: 3360
    • 13i Tobisu M, Chatani N. Chem. Soc. Rev. 2008; 37: 300
    • 13j Wu X, Zhu C. Chin. J. Chem. 2019; 37: 171
    • 13k Song F, Gou T, Wang B.-Q, Shi Z.-J. Chem. Soc. Rev. 2018; 47: 7078
    • 13l Sivaguru P, Wang Z, Zanoni G, Bi X. Chem. Soc. Rev. 2019; 48: 2615-2656
    • 13m Shi S, Liang Y, Jiao N. Chem. Rev. 2021; 121: 485
    • 13n Bi X, Zhang Q, Gu Z. Chin. J. Chem. 2021; 39: 1397

      For recent works on nitrogenation of C–C bonds, see:
    • 14a Liu J, Qiu X, Huang X, Luo X, Zhang C, Wei J, Pan J, Liang Y, Zhu Y, Qin Q, Song S, Jiao N. Nat. Chem. 2019; 11: 71
    • 14b Qiu X, Sang Y, Wu H, Xue XS, Yan Z, Wang Y, Cheng Z, Wang X, Tan H, Song S, Zhang G, Zhang X, Houk KN, Jiao N. Nature 2021; 597: 64
    • 14c Anugu RR, Falck JR. Chem. Sci. 2022; 13: 4821
    • 14d Liu J, Pan J, Luo X, Qiu X, Zhang C, Jiao N. Research (Washington, DC U. S.) 2020; 2020: 7947029
    • 14e Qiu X, Wang Y, Su L, Jin R, Song S, Qin Q, Li J, Zong B, Jiao N. Chin. J. Chem. 2021; 39: 3011
    • 14f Chen F, Qin C, Cui Y, Jiao N. Angew. Chem. Int. Ed. 2011; 50: 11487
    • 14g Kuninobu Y, Uesugi T, Kawata A, Takai K. Angew. Chem. Int. Ed. 2011; 50: 10406
    • 14h Cao L, Ding J, Gao M, Wang Z, Li J, Wu A. Org. Lett. 2009; 11: 3810
    • 14i Subramanian P, Indu S, Kaliappan KP. Org. Lett. 2014; 16: 6212
    • 14j Zhu M, Cheng Z, Wei J, Tan H, Jiao N. CCS Chem. 2022; in press; DOI DOI: 10.31635/ccschem.022.202202585.
    • 14k Wang J, Lu H, He Y, Jing C, Wei H. J. Am. Chem. Soc. 2022; 144: 22433
  • 15 For the preparation of carbodiimide 4, see: Fell JB, Coppola GM. Synth. Commun. 1995; 25: 43
    • 16a Tona V, Maryasin B, de la Torre A, Sprachmann J, González L, Maulide N. Org. Lett. 2017; 19: 2662
    • 16b Bechara WS, Khazhieva IS, Rodriguez E, Charette AB. Org. Lett. 2015; 17: 1184
    • 16c Xiao K.-J, Wang A.-E, Huang P.-Q. Angew. Chem. Int. Ed. 2012; 51: 8314
    • 16d Ye J.-L, Zhu Y.-N, Geng H, Huang P.-Q. Sci. China: Chem. 2018; 61: 687
  • 17 Aminotetrazoles 2a–y; General ProcedureUnder air, the appropriate secondary amide 1 (0.3 mmol) was dissolved in TCE (1 mL, 0.3 M) and Tf2O (169 mg, 0.6 mmol) was added at 0 °C. The mixture was stirred at 0 °C for 15 min, then TMSN3 (104 mg, 0.9 mmol) was added and the mixture was warmed to 40 °C. The vial was sealed, and the mixture was stirred under air at 40 °C for 24 h then cooled to RT. The reaction was quenched with Et3N (5 mL) at 0 °C, and the mixture was diluted with EtOAc (12 mL). The organic phase was filtered through a pad of silica gel using EtOAc to dilute the product. The filtrate was concentrated and the residue was purified by flash chromatography (silica gel). N-Methyl-1-phenyl-1H-tetrazol-5-amine (2a)Yellow solid; yield: 33.6 mg (64%). 1H NMR (400 MHz, CDCl3): δ = 7.53–7.47 (m, 2 H), 7.47–7.40 (m, 3 H), 4.86 (br s, 1 H), 3.06 (d, J = 4.8 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 155.29, 133.05, 130.06, 129.62, 123.80, 30.70. HRMS (ESI): m/z [M + H]+ calcd for C8H10N5: 176.0931; found: 176.0935