Synlett 2023; 34(20): 2388-2392
DOI: 10.1055/a-2065-3962
cluster
Special Issue Dedicated to Prof. Hisashi Yamamoto

Design of Y-Shaped Trimers of Chiral Phase-Transfer Catalysts for the Asymmetric Alkylation of Amino Acid Derivatives

Shengyu Yu
a   School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. of China
,
Jiahao Liu
a   School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. of China
,
Zhe Wang
a   School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. of China
,
Terumasa Kato
a   School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. of China
b   Guangdong Provincial Key Laboratory of Plant Resouces Biorefinery, Guangdong University of Technology, Guangzhou, 510006, P. R. of China
c   Laboratory of Organocatalytic Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
,
Yan Liu
a   School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. of China
b   Guangdong Provincial Key Laboratory of Plant Resouces Biorefinery, Guangdong University of Technology, Guangzhou, 510006, P. R. of China
,
Keiji Maruoka
a   School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. of China
b   Guangdong Provincial Key Laboratory of Plant Resouces Biorefinery, Guangdong University of Technology, Guangzhou, 510006, P. R. of China
c   Laboratory of Organocatalytic Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
› Author Affiliations
We are grateful for the financial support from the National Natural Science Foundation of China (Nos. 21977019, 22101053, 22050410279, 22250710134), the Guangdong Provincial Key Laboratory of Plant Resources Biorefinery (2021B1212040011), and the Japan Society for the Promotion of Science (JSPS KAKENHI, Grant JP21H05026).


Dedicated to the 80th birthday of Prof. Hisashi Yamamoto

Abstract

A series of soluble Y-shaped trimers of chiral phase-transfer catalysts were synthesized and utilized in the asymmetric alkylation of amino acid Schiff bases. The length of the linker between the ammonium cation of the simplified Maruoka catalyst and a phloroglucinol moiety was varied and excellent yields and enantioselectivity were observed when using the Y-shaped trimer of chiral phase-transfer catalyst with an octamethylene linker. A theoretical study of the most efficient Y-shaped trimer of chiral phase-transfer catalyst suggests the chiral ammonium center of the catalyst is more exposed and thus more available in the reaction.

Supporting Information



Publication History

Received: 05 March 2023

Accepted after revision: 29 March 2023

Accepted Manuscript online:
29 March 2023

Article published online:
09 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • Selected reviews on the development of peptide-based drugs:
    • 1a Harris JM, Chess RB. Nat. Rev. Drug Discovery 2003; 2: 214
    • 1b Torchilin V. Adv. Drug. Deliv. Rev. 2011; 63: 131
    • 1c Craik DJ, Fairlie DP, Liras S, Price D. Chem. Biol. Drug. Des. 2013; 81: 136
    • 1d Vermonden T, Censi R, Hennink WE. Chem. Rev. 2012; 112: 2853
    • 1e Bromberg LE, Ron ES. Adv. Drug Delivery Rev. 1998; 31: 197
    • 1f Henninot A, Collins JC, Nuss JM. J. Med. Chem. 2018; 61: 1382

      Selected reviews on the peptide drug candidates:
    • 2a Fosgerau K, Hoffmann T. Drug Discovery Today 2015; 20: 122
    • 2b Lau JL, Dunn MK. Bioorg. Med. Chem. 2018; 26: 2700
    • 2c Adessi C, Soto C. Curr. Med. Chem. 2002; 9: 963
    • 2d De Lemos JA, McGuire DK, Drazner MH. Lancet 2003; 362: 316
    • 2e Giordanetto F, Kihlberg J. J. Med. Chem. 2014; 57: 278
    • 2f Butler MS, Blaskovich MA, Cooper MA. J. Antibiot. (Tokyo) 2013; 66: 571
    • 2g Andreas RK, Robert B. Drugs 2003; 63: 389
    • 2h Matsumura Y. Adv. Drug Delivery Rev. 2008; 60: 899
    • 2i Abbenante G, Fairlie DP. Med. Chem. 2005; 1: 71
    • 2j Zhao Z, Ukidve A, Kim J, Mitragotri S. Cell 2020; 181: 151

      Selected reviews on asymmetric phase-transfer alkylation of glycine derivatives:
    • 3a O’Donnell MJ. Aldrichimica Acta 2001; 34: 3
    • 3b Maruoka K, Ooi T. Chem. Rev. 2003; 103: 3013
    • 3c O’Donnell MJ. Acc. Chem. Res. 2004; 37: 506
    • 3d Lygo B, Andrews BI. Acc. Chem. Res. 2004; 37: 518
    • 3e Vachon J, Lacour J. Chimia 2006; 60: 266
    • 3f Hashimoto T, Maruoka K. Chem. Rev. 2007; 107: 5656
    • 3g Ooi T, Maruoka K. Aldrichimica Acta 2007; 40: 77
    • 3h Ooi T, Maruoka K. Angew. Chem. Int. Ed. 2007; 46: 4222
    • 3i Ikunaka M. Org. Process Res. Dev. 2008; 12: 698
    • 3j Maruoka K. Org. Process Res. Dev. 2008; 12: 679
    • 3k ;Asymmetric Phase Transfer Catalysis; Maruoka K.; Wiley-VCH: Weinheim, 2008;
    • 3l Jew SS, Park HG. Chem. Commun. 2009; 46: 7090
    • 3m Maruoka K. Chem. Rec. 2010; 10: 254
    • 3n Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
    • 3o Tan J, Yasuda N. Org. Process Res. Dev. 2015; 19: 1731
    • 3p O’Donnell MJ. Tetrahedron 2019; 75: 3667
    • 3q Maruoka K. Tetrahedron Lett. 2022; 110: 154159
    • 4a Park H, Jeong B, Yoo M, Park M, Huh H, Jew S. Tetrahedron Lett. 2001; 42: 4645
    • 4b Sallio R, Lebrun S, Schifano-Faux N, Goossens J, Agbossou-Niedercorn F, Deniau E, Michon C. Synlett 2013; 24: 1785
    • 5a Zhou J, Wan Q, Yan X, Xie L, Yuan Y. Chem. J. Chinese Universities 2015; 36: 477
    • 5b Itahara T, Tsuchida T, Morimoto M. Polym. Chem. 2010; 1: 1062
    • 5c Traulsen NL, Traulsen CH, Deutinger PM, Müller S, Schmidt D, Linder I, Schalley CA. Org. Biomol. Chem. 2015; 13: 10881
    • 5d Nardele CG, Asha SK. J. Phys. Chem. B 2014; 118: 1670
  • 6 General Procedure for the Asymmetric Benzylation of Glycine Schiff Base Using Chiral PTCs To a solution of chiral PTC (1 mol%) and N-(diphenylmethylene)glycine tert-butyl ester (5, 88.6 mg, 0.30 mmol) in toluene (1.0 mL)/50% KOH aqueous solution (1.0 mL) was added benzyl bromide (61.6 mg, 0.36 mmol) at 0 °C. The reaction mixture was stirred vigorously at the same temperature for 3-9 h. The resulting mixture was poured into ice-cooled water and extracted with CH2Cl2. The organic phase was washed with brine, dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluted with AcOEt/hexane = 1:50) to give product 6. tert-Butyl (R)-2-[(Diphenylmethylene)amino]-3-phenylpropanoate (6) 1H NMR (400 MHz, CDCl3): δ = 7.50-7.47 (m, 2 H), 7.25-7.13 (m, 6 H), 7.08-7.03 (m, 3 H), 6.96-6.94 (m, 2 H), 6.51 (d, J = 6.4 Hz, 2 H), 4.03 (dd, J = 9.2, 4.4 Hz, 1 H), 3.17-3.04 (m, 2 H), 1.36 (s, 9 H), 13C NMR (100 MHz, CDCl3): δ = 170.9, 170.4, 139.6, 138.4, 136.5, 130.2, 130.0, 128.8, 128.3, 128.2, 128.1, 128.0, 127.8, 126.3, 81.2, 68.0, 39.7, 28.1. The enantiomeric excess of compound 6 was determined by chiral HPLC analysis using Daicel Chiralcel OD-H, hexane/2-propanol = 99:1, flow rate 0.5 mL/min, λ = 254 nm, retention time: 13.2 min (R) and 18.9 min (S).
    • 7a Seibert J, Bannwarth C, Grimme S. J. Am. Chem. Soc. 2017; 139: 11682
    • 7b Bannwarth C, Caldeweyher E, Ehlert S, Hansen A, Pracht P, Seibert J, Spicher S. WIREs Comput. Mol. Sci. 2021; 11: 1493
    • 7c Grimme S, Bannwarth C, Shushkov P. J. Chem. Theory Comput. 2017; 13: 1989
  • 8 Lu T.; Molclus program, 1.9.9.9; http://www.keinsci.com/research/molclus.html

    • CREST (Conformer–Rotamer Ensemble Sampling Tool, version 2.10.2)/xtb (version 6.5.1) software:
    • 9a Grimme S. J. Chem. Theory Comput. 2019; 15: 2847
    • 9b Ehlert S, Stahn M, Spicher S, Rimme S. J. Chem. Theory Comput. 2021; 17: 4250
    • 9c Bannwarth C, Ehlert S, Grimme S. J. Chem. Theory Comput. 2019; 15: 1652
    • 10a Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision A.03. Gaussian, Inc; Wallingford, CT: 2016
    • 10b Lu T.; gau_xtb: A Gaussian interface for xtb code; http://sobereva.com/soft/gau_xtb (accessed Feb 9th, 2023)
  • 11 Kamachi T, Yoshizawa K. Org. Lett. 2014; 16: 472