RSS-Feed abonnieren
DOI: 10.1055/a-2066-2879
Asymmetric Synthesis of 3-Lactone-Substituted 2-Oxindoles with Vicinal Quaternary Carbon Centers through Vinylogous Conjugate Addition
Autor*innen
The authors thank the National Natural Science Foundation of China (U19A2014) and Sichuan University (2020SCUNL204) for financial support.

Dedicated to Professor Hisashi Yamamoto to celebrate his 80th birthday.
Abstract
A new method has been developed for constructing vicinal quaternary stereocenters with an oxindole–butanolide hybrid framework through asymmetric vinylogous addition of a siloxyfuran to an indol-2-one in the presence of a readily available N,N′-dioxide–Ni(OTf)2 complex catalyst. Various oxindole–lactones were obtained in up to 98% yield with >19:1 dr and 97% ee under mild reaction conditions. A possible transition-state model is proposed to explain the origin of the asymmetric induction.
Key words
asymmetric catalysis - nickel catalysis - ligands - bromooxindoles - lactones - vinylogous additionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2066-2879.
- Supporting Information (PDF) (opens in new window)
Publikationsverlauf
Eingereicht: 23. Februar 2023
Angenommen nach Revision: 30. März 2023
Accepted Manuscript online:
30. März 2023
Artikel online veröffentlicht:
09. Mai 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Peddibhotla S. Curr. Bioact. Compd. 2009; 5: 20
- 1b Marqués-López E, Herrera RP, Christmann M. Nat. Prod. Rep. 2010; 27: 1138
- 1c Dalpozzo R, Bartoli G, Bencivenni G. Chem. Soc. Rev. 2012; 41: 7247
- 1d Shen K, Liu X, Lin L, Feng X. Chem. Sci. 2012; 3: 327
- 1e Trost BM, Osipov M. Chem. Eur. J. 2015; 21: 16318
- 2a Feldman KS, Karatjas AG. Org. Lett. 2004; 6: 2849
- 2b Tokunaga T, Hume WE, Nagamine J, Kawamura T, Taiji M, Nagata R. Bioorg. Med. Chem. Lett 2005; 15: 1789
- 2c Roth GJ, Heckel A, Colbatzky F, Handschuh S, Kley J, Lehmann-Lintz T, Lotz R, Tontsch-Grunt U, Walter R, Hilberg F. J. Med. Chem. 2009; 52: 4466
- 2d Belmar J, Funk RL. J. Am. Chem. Soc. 2012; 134: 16941
- 2e Marek L, Váňa J, Svoboda J, Hanusek J. J. Org. Chem. 2021; 86: 10621
- 3a Fuchs JR, Funk RL. Org. Lett. 2005; 7: 677
- 3b Xie X, Jing L, Qin D, He W, Wu S, Jin L, Luo G. RSC Adv. 2014; 4: 11605
- 3c Bai X, Jing Z, Liu Q, Ye X, Zhang G, Zhao X, Jiang Z. J. Org. Chem. 2015; 80: 12686
- 3d Zhao M, Li N.-K, Zhang Y.-F, Pan F.-F, Wang X.-W. Tetrahedron 2016; 72: 1406
- 3e Jadhav AP, Manchanda A, Jaiswal MK, Singh RP. Adv. Synth. Catal. 2017; 359: 3917
- 3f Lin B, Chen Z.-Y, Liu H.-H, Wei Q.-D, Feng T.-T, Zhou Y, Wang C, Liu X.-L, Yuan W.-C. Molecules 2017; 22: 801
- 3g Mizuta S, Otaki H, Kitagawa A, Kitamura K, Morii Y, Ishihara J, Nishi K, Hashimoto R, Usui T, Chiba K. Org. Lett. 2017; 19: 2572
- 3h Yue J, Ma X.-T, Liu X.-L, Wang J.-X, Liu X.-W, Zhou Y. Green Chem. 2020; 22: 1837
- 3i Yuan W.-C, Zuo J, Yuan S.-P, Zhao J.-Q, Wang Z.-H, You Y. Org. Chem. Front. 2021; 8: 784
- 3j Yang W, Dong P, Xu J, Yang J, Liu X, Feng XM. Chem. Eur. J. 2021; 27: 9272
- 4 Fuchs JR, Funk RL. J. Am. Chem. Soc. 2004; 126: 5068
- 5 Menozzi C, Dalko PI, Cossy J. Chem. Commun. 2006; 4638
- 6 Xu J, Li R, Xu N, Liu X, Wang F, Feng XM. Org. Lett. 2021; 23: 1856
- 7 Ma S, Han XQ, Krishnan S, Virgil SC, Stoltz BM. Angew. Chem. Int. Ed. 2009; 48: 8037
- 8 Han SJ, Vogt F, Krishnan S, May JA, Gatti M, Virgil SC, Stoltz BM. Org. Lett. 2014; 16: 3316
- 9 Zhang BX, Wang XQ, Li CZ. J. Am. Chem. Soc. 2020; 142: 3269
- 10 Zheng JF, Lin LL, Dai L, Tang Q, Liu X, Feng XM. Angew. Chem. Int. Ed. 2017; 56: 13107
- 11 Xu J, Zhong ZW, Jiang MY, Zhou YQ, Liu XH, Feng X. CCS Chem. 2020; 2: 1894
- 12a Zhang H, Hong L, Kang H, Wang R. J. Am. Chem. Soc. 2013; 135: 14098
- 12b Zhang H, Kang H, Hong L, Dong W, Li G, Zheng X, Wang R. Org. Lett. 2014; 16: 2394
- 12c Liu X, Wang P, Bai L, Li D, Wang L, Yang D, Wang R. ACS Catal. 2018; 8: 10888
- 13 Wei H, Chen G, Zou H, Zhou Z, Lei P, Yan J, Xie W. Org. Chem. Front. 2021; 8: 3255
- 14a Liu X, Lin L, Feng X. Acc. Chem. Res. 2011; 44: 574
- 14b Liu X, Lin L, Feng X. Org. Chem. Front. 2014; 1: 298
- 14c Liu X, Zheng HF, Xia Y, Lin L, Feng X. Acc. Chem. Res. 2017; 50: 2621
- 14d Liu X, Dong S, Lin L, Feng X. Chin. J. Chem. 2018; 36: 791
- 14e Wang M, Li W. Chin. J. Chem. 2021; 39: 969
- 14f Dong S, Liu X, Feng X. Acc. Chem. Res. 2022; 55: 415
- 14g Wang Z, Liu X, Feng X. Aldrichimica Acta 2020; 53: 3
- 14h Zhong X, Tan J, Qiao J, Zhou YQ, Lv C, Su ZS, Dong S, Feng X. Chem. Sci. 2021; 12: 9991
- 14i Xu Y, Wang H, Yang Z, Zhou Y, Liu Y, Feng X. Chem 2022; 8: 2011
- 14j He C, Wu Z, Zou Y, Cao W, Feng X. Org. Chem. Front. 2022; 9: 703
- 14k Wang Y, Yihuo A, Wang L, Dong S, Feng X. Sci. China Chem. 2022; 65: 546
- 14l Yang L, Li W, Hou L, Zhan T, Cao W, Liu X, Feng X. Chem. Sci. 2022; 13: 8576
- 14m Zhong Z, Ning L, Lu Y, Tan J, Lin L, Feng X. Sci. China Chem. 2023; 66: 799
- 15a Montagnon T, Tofi M, Vassilikogiannakis G. Acc. Chem. Res. 2008; 41: 1001
- 15b Karmakar R, Pahari P, Mal D. Chem. Rev. 2014; 114: 6213
- 15c Zeng X.-P, Cao Z.-Y, Wang Y.-H, Zhou F, Zhou J. Chem. Rev. 2016; 116: 7330
- 15d Mao B, Fañanás-Mastral M, Feringa BL. Chem. Rev. 2017; 117: 10502
- 15e Murauski KJ. R, Jaworski AA, Scheidt KA. Chem. Soc. Rev. 2018; 47: 1773
- 16a Zhou L, Lin L, Ji J, Xie M, Liu X, Feng X. Org. Lett. 2011; 13: 3056
- 16b Ji J, Lin L, Zhou L, Zhang Y, Liu X, Feng X. Adv. Synth. Catal. 2013; 355: 2764
- 16c Ji J, Lin L, Tang Q, Kang TF, Liu X, Feng X. ACS Catal. 2017; 7: 3763
- 16d Tang Q, Lin L, Ji J, Hu H, Liu X, Feng X. Chem. Eur. J. 2017; 23: 16447
- 16e Wu XW, Iwata T, Scharf A, Qin T, Reichl KD, Porco JA. Jr. J. Am. Chem. Soc. 2018; 140: 5969
- 16f Trost BM, Gnanamani E, Kalnmals CA, Hung C.-I, Tracy JS. J. Am. Chem. Soc. 2019; 141: 1489
- 16g Cui J, Oriez R, Noda H, Watanabe T, Shibasaki M. Angew. Chem. Int. Ed. 2022; 61: e202203128
- 16h You Z.-H, Zou S, Song Y.-L, Song X.-Q. Org. Lett. 2022; 24: 7183
- 16i Li Y, Xin S, Weng R, Liu X, Feng X. Chem. Sci. 2022; 13: 8871
- 17a Wen Y, Huang X, Huang J, Xiong Y, Qin B, Feng X. Synlett 2005; 2445
- 17b Zhang X, Chen D, Liu X, Feng X. J. Org. Chem. 2007; 72: 5227
- 17c Hou L, Zhou Y, Yu H, Zhan T, Cao WD, Feng X. J. Am. Chem. Soc. 2022; 144: 22140
- 17d Mo Y, Chen Q, Li J, Ye D, Zhou Y, Dong S, Liu X, Feng X. ACS Catal. 2023; 13: 877
- 17e Zhan TY, Yang LQ, Chen QY, Weng R, Liu X, Feng X. CCS Chem. 2023; in press
- 17f Zhang D, Pu M, Liu Z, Zhou Y, Yang Z, Liu X, Wu Y, Feng X. J. Am. Chem. Soc. 2023; 145: 4808
- 18 CCDC 2204536 contains the supplementary crystallographic data for compound 3d. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
- 19 Xu X, Zhang J, Dong S, Lin L, Lin X, Liu X, Feng X. Angew. Chem. Int. Ed. 2018; 57: 8734
- 20 Guo J, Liu X, He C, Tan F, Dong S, Feng X. Chem. Commun. 2018; 54: 12254
- 21 (3S)-3-Methyl-3-[(2S)-2-methyl-5-oxo-2,5-dihydrofuran-2-yl]-1,3-dihydro-2H-indol-2-one (3a): Typical Procedure A dry reaction tube was charged with L3-PiMe2 (10 mol%), Ni(OTf)2 (10 mol%), 3-bromo-3-methyloxindole (1a; 0.10 mmol), and EtOAc (1.0 mL), and the mixture was stirred at 30 °C for 30 min, then cooled to 0 °C. The 5-methyl-substituted siloxyfuran 2a (0.11 mmol) and Et3N (1.0 equiv) were added with stirring, and the resulting mixture was stirred at 0 °C for 12 h. The mixture was then directly purified by flash chromatography [silica gel, PE–EtOAc (2:1)] to give a colorless oil; yield: 23.8 mg (98%, 19:1 dr, 97% ee). HPLC [Daicel Chiralcel ID, hexane–i-PrOH (90:10), 1.0 mL/min, λ = 254 nm], t R (major) = 20.23 min, t R (minor) = 17.71 min. IR ν~(cm–1): 3258, 1709, 1618, 1471, 1377, 1328, 1254, 1205, 1128, 1105, 958, 819, 754, 695, 606, 489 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.60 (s, 1 H), 7.27 (d, J = 5.6 Hz, 1 H), 7.24–7.18 (m, 2 H), 7.00 (td, J = 0.8 Hz, 1 H), 6.88 (dt, J = 8.0, 0.8 Hz, 1 H), 5.79 (d, J = 5.6 Hz, 1 H), 1.76 (s, 3 H), 1.62 (s, 3 H).13C NMR (101 MHz, CDCl3): δ = 178.7, 172.1, 157.3, 139.6, 130.5, 128.8, 125.2, 123.1, 122.3, 109.9, 89.7, 53.6, 19.0, 18.3. ESI-HRMS: m/z [M + Na]+ calcd for C14H13NNaO3: 266.0788; found: 266.0787.
For selected reviews, see:
For selected examples, see:
For selected examples, see:
For selected reviews of N,N′-dioxides, see:
For selected recent examples of; N,N′-dioxide–Ni(II) catalysis, see:
For selected reviews, see: