Synlett 2023; 34(20): 2405-2410
DOI: 10.1055/a-2066-2879
cluster
Special Issue Dedicated to Prof. Hisashi Yamamoto

Asymmetric Synthesis of 3-Lactone-Substituted 2-Oxindoles with Vicinal Quaternary Carbon Centers through Vinylogous Conjugate Addition

Zegong Li
,
Zi Zeng
,
Qi Tang
,
Ziwei Zhong
,
Xiaohua Liu
,
Xiaoming Feng
The authors thank the National Natural Science Foundation of China (U19A2014) and Sichuan University (2020SCUNL204) for financial support.


Dedicated to Professor Hisashi Yamamoto to celebrate his 80th birthday.

Abstract

A new method has been developed for constructing vicinal quaternary stereocenters with an oxindole–butanolide hybrid framework through asymmetric vinylogous addition of a siloxyfuran to an indol-2-one in the presence of a readily available N,N′-dioxide–Ni(OTf)2 complex catalyst. Various oxindole–lactones were obtained in up to 98% yield with >19:1 dr and 97% ee under mild reaction conditions. A possible transition-state model is proposed to explain the origin of the asymmetric induction.

Supporting Information



Publication History

Received: 23 February 2023

Accepted after revision: 30 March 2023

Accepted Manuscript online:
30 March 2023

Article published online:
09 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For selected reviews, see:
    • 1a Peddibhotla S. Curr. Bioact. Compd. 2009; 5: 20
    • 1b Marqués-López E, Herrera RP, Christmann M. Nat. Prod. Rep. 2010; 27: 1138
    • 1c Dalpozzo R, Bartoli G, Bencivenni G. Chem. Soc. Rev. 2012; 41: 7247
    • 1d Shen K, Liu X, Lin L, Feng X. Chem. Sci. 2012; 3: 327
    • 1e Trost BM, Osipov M. Chem. Eur. J. 2015; 21: 16318

      For selected examples, see:
    • 2a Feldman KS, Karatjas AG. Org. Lett. 2004; 6: 2849
    • 2b Tokunaga T, Hume WE, Nagamine J, Kawamura T, Taiji M, Nagata R. Bioorg. Med. Chem. Lett 2005; 15: 1789
    • 2c Roth GJ, Heckel A, Colbatzky F, Handschuh S, Kley J, Lehmann-Lintz T, Lotz R, Tontsch-Grunt U, Walter R, Hilberg F. J. Med. Chem. 2009; 52: 4466
    • 2d Belmar J, Funk RL. J. Am. Chem. Soc. 2012; 134: 16941
    • 2e Marek L, Váňa J, Svoboda J, Hanusek J. J. Org. Chem. 2021; 86: 10621

      For selected examples, see:
    • 3a Fuchs JR, Funk RL. Org. Lett. 2005; 7: 677
    • 3b Xie X, Jing L, Qin D, He W, Wu S, Jin L, Luo G. RSC Adv. 2014; 4: 11605
    • 3c Bai X, Jing Z, Liu Q, Ye X, Zhang G, Zhao X, Jiang Z. J. Org. Chem. 2015; 80: 12686
    • 3d Zhao M, Li N.-K, Zhang Y.-F, Pan F.-F, Wang X.-W. Tetrahedron 2016; 72: 1406
    • 3e Jadhav AP, Manchanda A, Jaiswal MK, Singh RP. Adv. Synth. Catal. 2017; 359: 3917
    • 3f Lin B, Chen Z.-Y, Liu H.-H, Wei Q.-D, Feng T.-T, Zhou Y, Wang C, Liu X.-L, Yuan W.-C. Molecules 2017; 22: 801
    • 3g Mizuta S, Otaki H, Kitagawa A, Kitamura K, Morii Y, Ishihara J, Nishi K, Hashimoto R, Usui T, Chiba K. Org. Lett. 2017; 19: 2572
    • 3h Yue J, Ma X.-T, Liu X.-L, Wang J.-X, Liu X.-W, Zhou Y. Green Chem. 2020; 22: 1837
    • 3i Yuan W.-C, Zuo J, Yuan S.-P, Zhao J.-Q, Wang Z.-H, You Y. Org. Chem. Front. 2021; 8: 784
    • 3j Yang W, Dong P, Xu J, Yang J, Liu X, Feng XM. Chem. Eur. J. 2021; 27: 9272
  • 4 Fuchs JR, Funk RL. J. Am. Chem. Soc. 2004; 126: 5068
  • 5 Menozzi C, Dalko PI, Cossy J. Chem. Commun. 2006; 4638
  • 6 Xu J, Li R, Xu N, Liu X, Wang F, Feng XM. Org. Lett. 2021; 23: 1856
  • 7 Ma S, Han XQ, Krishnan S, Virgil SC, Stoltz BM. Angew. Chem. Int. Ed. 2009; 48: 8037
  • 8 Han SJ, Vogt F, Krishnan S, May JA, Gatti M, Virgil SC, Stoltz BM. Org. Lett. 2014; 16: 3316
  • 9 Zhang BX, Wang XQ, Li CZ. J. Am. Chem. Soc. 2020; 142: 3269
  • 10 Zheng JF, Lin LL, Dai L, Tang Q, Liu X, Feng XM. Angew. Chem. Int. Ed. 2017; 56: 13107
  • 11 Xu J, Zhong ZW, Jiang MY, Zhou YQ, Liu XH, Feng X. CCS Chem. 2020; 2: 1894
    • 12a Zhang H, Hong L, Kang H, Wang R. J. Am. Chem. Soc. 2013; 135: 14098
    • 12b Zhang H, Kang H, Hong L, Dong W, Li G, Zheng X, Wang R. Org. Lett. 2014; 16: 2394
    • 12c Liu X, Wang P, Bai L, Li D, Wang L, Yang D, Wang R. ACS Catal. 2018; 8: 10888
  • 13 Wei H, Chen G, Zou H, Zhou Z, Lei P, Yan J, Xie W. Org. Chem. Front. 2021; 8: 3255

    • For selected reviews of N,N′-dioxides, see:
    • 14a Liu X, Lin L, Feng X. Acc. Chem. Res. 2011; 44: 574
    • 14b Liu X, Lin L, Feng X. Org. Chem. Front. 2014; 1: 298
    • 14c Liu X, Zheng HF, Xia Y, Lin L, Feng X. Acc. Chem. Res. 2017; 50: 2621
    • 14d Liu X, Dong S, Lin L, Feng X. Chin. J. Chem. 2018; 36: 791
    • 14e Wang M, Li W. Chin. J. Chem. 2021; 39: 969
    • 14f Dong S, Liu X, Feng X. Acc. Chem. Res. 2022; 55: 415
    • 14g Wang Z, Liu X, Feng X. Aldrichimica Acta 2020; 53: 3

    • For selected recent examples of; N,N′-dioxide–Ni(II) catalysis, see:
    • 14h Zhong X, Tan J, Qiao J, Zhou YQ, Lv C, Su ZS, Dong S, Feng X. Chem. Sci. 2021; 12: 9991
    • 14i Xu Y, Wang H, Yang Z, Zhou Y, Liu Y, Feng X. Chem 2022; 8: 2011
    • 14j He C, Wu Z, Zou Y, Cao W, Feng X. Org. Chem. Front. 2022; 9: 703
    • 14k Wang Y, Yihuo A, Wang L, Dong S, Feng X. Sci. China Chem. 2022; 65: 546
    • 14l Yang L, Li W, Hou L, Zhan T, Cao W, Liu X, Feng X. Chem. Sci. 2022; 13: 8576
    • 14m Zhong Z, Ning L, Lu Y, Tan J, Lin L, Feng X. Sci. China Chem. 2023; 66: 799

      For selected reviews, see:
    • 15a Montagnon T, Tofi M, Vassilikogiannakis G. Acc. Chem. Res. 2008; 41: 1001
    • 15b Karmakar R, Pahari P, Mal D. Chem. Rev. 2014; 114: 6213
    • 15c Zeng X.-P, Cao Z.-Y, Wang Y.-H, Zhou F, Zhou J. Chem. Rev. 2016; 116: 7330
    • 15d Mao B, Fañanás-Mastral M, Feringa BL. Chem. Rev. 2017; 117: 10502
    • 15e Murauski KJ. R, Jaworski AA, Scheidt KA. Chem. Soc. Rev. 2018; 47: 1773
    • 16a Zhou L, Lin L, Ji J, Xie M, Liu X, Feng X. Org. Lett. 2011; 13: 3056
    • 16b Ji J, Lin L, Zhou L, Zhang Y, Liu X, Feng X. Adv. Synth. Catal. 2013; 355: 2764
    • 16c Ji J, Lin L, Tang Q, Kang TF, Liu X, Feng X. ACS Catal. 2017; 7: 3763
    • 16d Tang Q, Lin L, Ji J, Hu H, Liu X, Feng X. Chem. Eur. J. 2017; 23: 16447
    • 16e Wu XW, Iwata T, Scharf A, Qin T, Reichl KD, Porco JA. Jr. J. Am. Chem. Soc. 2018; 140: 5969
    • 16f Trost BM, Gnanamani E, Kalnmals CA, Hung C.-I, Tracy JS. J. Am. Chem. Soc. 2019; 141: 1489
    • 16g Cui J, Oriez R, Noda H, Watanabe T, Shibasaki M. Angew. Chem. Int. Ed. 2022; 61: e202203128
    • 16h You Z.-H, Zou S, Song Y.-L, Song X.-Q. Org. Lett. 2022; 24: 7183
    • 16i Li Y, Xin S, Weng R, Liu X, Feng X. Chem. Sci. 2022; 13: 8871
    • 17a Wen Y, Huang X, Huang J, Xiong Y, Qin B, Feng X. Synlett 2005;  2445
    • 17b Zhang X, Chen D, Liu X, Feng X. J. Org. Chem. 2007; 72: 5227
    • 17c Hou L, Zhou Y, Yu H, Zhan T, Cao WD, Feng X. J. Am. Chem. Soc. 2022; 144: 22140
    • 17d Mo Y, Chen Q, Li J, Ye D, Zhou Y, Dong S, Liu X, Feng X. ACS Catal. 2023; 13: 877
    • 17e Zhan TY, Yang LQ, Chen QY, Weng R, Liu X, Feng X. CCS Chem. 2023; in press DOI: 10.31635/ccschem.022.202202405.
    • 17f Zhang D, Pu M, Liu Z, Zhou Y, Yang Z, Liu X, Wu Y, Feng X. J. Am. Chem. Soc. 2023; 145: 4808
  • 18 CCDC 2204536 contains the supplementary crystallographic data for compound 3d. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
  • 19 Xu X, Zhang J, Dong S, Lin L, Lin X, Liu X, Feng X. Angew. Chem. Int. Ed. 2018; 57: 8734
  • 20 Guo J, Liu X, He C, Tan F, Dong S, Feng X. Chem. Commun. 2018; 54: 12254
  • 21 (3S)-3-Methyl-3-[(2S)-2-methyl-5-oxo-2,5-dihydrofuran-2-yl]-1,3-dihydro-2H-indol-2-one (3a): Typical Procedure A dry reaction tube was charged with L3-PiMe2 (10 mol%), Ni(OTf)2 (10 mol%), 3-bromo-3-methyloxindole (1a; 0.10 mmol), and EtOAc (1.0 mL), and the mixture was stirred at 30 °C for 30 min, then cooled to 0 °C. The 5-methyl-substituted siloxyfuran 2a (0.11 mmol) and Et3N (1.0 equiv) were added with stirring, and the resulting mixture was stirred at 0 °C for 12 h. The mixture was then directly purified by flash chromatography [silica gel, PE–EtOAc (2:1)] to give a colorless oil; yield: 23.8 mg (98%, 19:1 dr, 97% ee). HPLC [Daicel Chiralcel ID, hexane–i-PrOH (90:10), 1.0 mL/min, λ = 254 nm], t R (major) = 20.23 min, t R (minor) = 17.71 min. IR ν~(cm–1): 3258, 1709, 1618, 1471, 1377, 1328, 1254, 1205, 1128, 1105, 958, 819, 754, 695, 606, 489 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.60 (s, 1 H), 7.27 (d, J = 5.6 Hz, 1 H), 7.24–7.18 (m, 2 H), 7.00 (td, J = 0.8 Hz, 1 H), 6.88 (dt, J = 8.0, 0.8 Hz, 1 H), 5.79 (d, J = 5.6 Hz, 1 H), 1.76 (s, 3 H), 1.62 (s, 3 H).13C NMR (101 MHz, CDCl3): δ = 178.7, 172.1, 157.3, 139.6, 130.5, 128.8, 125.2, 123.1, 122.3, 109.9, 89.7, 53.6, 19.0, 18.3. ESI-HRMS: m/z [M + Na]+ calcd for C14H13NNaO3: 266.0788; found: 266.0787.