Synlett 2023; 34(15): 1804-1808
DOI: 10.1055/a-2082-0918
letter

Electrochemical Cyclization of Hydrazones and Amidines To Access Trisubstituted 1,2,4-Triazoles

Rui Jiang
a   Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, No. 590, Huanghe Road, Yinchuan, Ningxia, P. R. of China
,
Yangxiu Mu
a   Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, No. 590, Huanghe Road, Yinchuan, Ningxia, P. R. of China
,
Jing Hou
a   Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, No. 590, Huanghe Road, Yinchuan, Ningxia, P. R. of China
,
Yaya Wan
a   Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, No. 590, Huanghe Road, Yinchuan, Ningxia, P. R. of China
,
Yu Hong
a   Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, No. 590, Huanghe Road, Yinchuan, Ningxia, P. R. of China
,
Zhixiang Yang
a   Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, No. 590, Huanghe Road, Yinchuan, Ningxia, P. R. of China
,
Dong Tang
a   Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, No. 590, Huanghe Road, Yinchuan, Ningxia, P. R. of China
b   Department of Chemical and Material Engineering, Quzhou College of Technology, P. R. of China
› Author Affiliations
Financial support was provided by the Natural Science Foundation of Ningxia Province (2022AAC03448) and the Key Research and Development Program of Ningxia (2022CMG02007).


Abstract

A KI-mediated electrochemical method has been developed for the synthesis of trisubstituted 1,2,4-triazoles from easily accessible hydrazones and amidines derivatives. The protocol provides various aryl and alkyl 1,2,4-triazoles in moderate to good yields with good functional-group tolerance and without the need for any chemical oxidants in an undivided cell.

Supporting Information



Publication History

Received: 22 March 2023

Accepted after revision: 26 April 2023

Accepted Manuscript online:
26 April 2023

Article published online:
02 June 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Blokhina SV, Sharapova AV, Ol’khovich MV, Doroshenko IA, Levshin IB, Perlovich GL. Bioorg. Med. Chem. Lett. 2021; 40: 127944
    • 1b Yang Y, Yan D, Cheng H, Nan G, Hou X, Ren L, Yang Y, Li X, Tian J, Ye F, Xiao Z. Bioorg. Chem. 2022; 129: 106162
    • 1c Pachuta-Stec A. Mini-Rev. Med. Chem. 2022; 22: 1081
    • 1d Bekircan O, Danış Ö, Şahin ME, Çetin M. Bioorg. Chem. 2022; 118: 105493
    • 1e Gitto R, Vittorio S, Bucolo F, Peña-Díaz S, Siracusa R, Cuzzocrea S, Ventura S, De Paola R, De Luca L. ACS Chem. Neurosci. 2022; 13: 581
    • 1f Strzelecka M, Świątek P. Pharmaceuticals 2021; 14: 224
    • 2a Abdelli A, Azzouni S, Plais R, Gaucher A, Efrit ML, Prim D. Tetrahedron Lett. 2021; 86: 153518
    • 2b Dai J, Tian S, Yang X, Liu Z. Front. Chem. 2022; 10: 891484
    • 2c Castanedo GM, Seng PS, Blaquiere N, Trapp S, Staben ST. J. Org. Chem. 2011; 76: 1177
    • 3a Yuan L, Yuan GQ. Tetrahedron 2022; 106: 132647
    • 3b Zhao Z, He Y, Li M, Xu J, Li X, Zhang L, Gu L. Tetrahedron 2021; 87: 132111
    • 3c Zhang X.-H, Kang H.-Q, Tao Y.-Y, Li Y.-H, Zhao J.-R, Ma L.-Y, Liu H.-M. Eur. J. Med. Chem. 2021; 218: 113392
    • 3d Chen Z, Li H, Dong W, Miao M, Ren H. Org. Lett. 2016; 18: 1334
  • 4 Zhang L, Tang D, Gao J, Wang J, Wu P, Meng X, Chen B. Synthesis 2016; 48: 3924
  • 5 Zhang Y, Zeng J.-L, Chen Z, Wang R. J. Org. Chem. 2022; 87: 14514
  • 6 Zhang C, Liang Z, Jia X, Wang M, Zhang G, Hu M.-L. Chem. Commun. 2020; 56: 14215
    • 7a Li H, Tang D, Iqbal Z, Wan Y, Jiang R, Yang Z, Yang J. New J. Chem. 2022; 46: 20347
    • 7b Zhang W, Jiang R, Mu Y, Hong Y, Wan Y, Yang Z, Tang D. Tetrahedron Lett. 2023; 114: 154256
    • 7c Yang M, Jiang R, Mu Y, Hong Y, Wan Y, Hou J, Tang D. Chem. Commun. 2023; 59: 2303
  • 8 Li W, Xiong M, Liang X, Wang D, Zhu H, Pan Y. ChemistryOpen 2022; 11: e202100268
    • 9a Huang H, Guo W, Wu W, Li CJ, Jiang H. Org. Lett. 2015; 17: 2894
    • 9b Tiwari AR, Bhanage BM. Org. Biomol. Chem. 2016; 14: 7920
    • 9c You Q, Wang F, Wu C, Shi T, Min D, Chen H, Zhang W. Org. Biomol. Chem. 2015; 13: 6723
    • 9d Tiwari AR, Bhanage BM. Green Chem. 2016; 18: 144
    • 9e Wang D, Wan X, Zhou Y, Liu J, Cai J, Deng GJ. Asian J. Org. Chem. 2023; 12: e202200674
    • 10a Zuo H.-D, Hao W.-J, Zhu C.-F, Guo C, Tu S.-J, Jiang B. Org. Lett. 2020; 22: 4471
    • 10b Liang S, Zeng C.-C, Luo X.-G, Ren F.-Z, Tian H.-Y, Sun B.-G, Little RD. Green Chem. 2016; 18: 2222
  • 11 1,2,4-Triazoles 3ab–3oa; General Procedure Hydrazone 1 (0.6 mmol), amidine 2 (0.3 mmol), KI (1.0 equiv), K3PO4 (20 mol%), LiClO4 (0.1 M), and MeCN–H2O (6 + 1 mL) were added to an undivided cell (10 mL) equipped with a graphite-rod anode (diameter: 6 mm) and a Pt plate cathode (1 × 1 cm), and the mixture was stirred and electrolyzed under constant-current conditions (10 mA) at r.t. for 5 h. When the reaction was complete, the solvent was removed under reduced pressure and the residue was extracted with EtOAc (3 × 10 mL) and H2O. The organic layers were combined and dried (MgSO4), and the residue was purified by column chromatography [silica gel PE–EtOAc (5:1)]. 5-Methyl-1,3-diphenyl-1H-1,2,4-triazole (3aa)3a Yellow solid; yield: 61%; mp 89–92 °C. 1H NMR (400 MHz, CDCl3): δ = 8.20–8.09 (m, 2 H), 7.50 (dd, J = 4.3, 1.7 Hz, 4 H), 7.47–7.39 (m, 4 H), 2.56 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 161.20, 152.83, 137.43, 130.67, 129.34, 129.17, 128.63, 128.47, 126.28, 124.57, 13.11.