CC BY 4.0 · SynOpen 2023; 07(03): 353-361
DOI: 10.1055/a-2129-9076
review

Heterogeneous Catalysis for Sustainable Energy

Jaya Tuteja


Abstract

The dominance of fossil fuels in the energy sector is associated with greenhouse-gas emission and release of atmospheric pollutants. Biomass-based energy generation is considered a potential alternative for replacement of fossil fuels, and it has been used as a sustainable source of heat and power for a long time. Biomass as a feedstock can be used for the synthesis of different energy products. Catalysts play a significant role in various conversion routes and affect the yield of major products. Researchers have mainly focused on starchy feedstock, lignocellulosic biomass, and triglyceride containing biomass for bioenergy production. Catalytic reactions for biomass feedstock mainly involve deoxygenation, hydrolysis, hydrogenation, dehydrogenation, and oxidation etc. This review provides an overview of catalytic reactions for the conversion of different classes of biomass feedstock for biofuel production. The primary aim of this review is to summarize catalytic strategies for conversion of lignocellulosic biomass into value-added products.



Publication History

Received: 28 May 2023

Accepted after revision: 28 June 2023

Accepted Manuscript online:
14 July 2023

Article published online:
10 August 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Alonso DM, Bond JQ, Dumesic J. Green Chem. 2010; 12: 1493
  • 2 Luque R, De S, Balu AM. Catalysts 2016; 6: 148 DOI: 10.3390/catal6100148.
  • 3 Cheng S, Zhu S. BioResources 2009; 4: 456
  • 4 Carvalheiro F, Duarte LC, Girio FM. J. Sci. Ind. Res. 2008; 67: 849
  • 5 Lüke HW. Erdol Erdgas Kohle 2005; 121: 3
  • 6 Kubičková I, Kubička D. Waste Biomass Valorization 2010; 1: 293
  • 7 Yang X, Choi HS, Park C, Kim SW. Renewable Sustainable Energy Rev. 2015; 49: 335
  • 8 Demirbas A. Biofuels – Securing the Planet’s Future Energy Needs. Springer-Verlag; London: 2009
  • 9 Demirbas A. Biofuels – Securing the Planet’s Future Energy Needs. Springer-Verlag; London: 2009
  • 10 Van Gerpen JH, Peterson CL, Goering CE. Biodiesel: An Alternative Fuel for Compression Ignition Engines. ASAE Distinguished Lecture no. 31 . American Society of Agricultural and Biological Engineers; St. Joseph Michigan: 2007: pp 1-22
  • 11 Kubička D. Collect. Czech. Chem. Commun. 2008; 73: 1015
  • 12 Zhou C.-H, Xia X, Lin C.-X, Tong D.-S, Beltramini J. Chem. Soc. Rev. 2011; 40: 5588
  • 13 Somerville C, Youngs H, Taylor C, Davis SC, Long SP. Science 2010; 329: 790
  • 14 Taarning E, Osmundsen CM, Yang XB, Voss B, Andersen SI, Christensen CH. Energy Environ. Sci. 2011; 793
  • 15 Boerjan W, Ralph J, Baucher M. Annu. Rev. Plant Biol. 2003; 54: 519
  • 16 Shuai L, Pan XJ. Biohydrocarbons: Next Generation Liquid Fuels from Lignocellulosic Biomass. In Research Progress in Paper Industry and Biorefinery: 4th ISETPP, Guangzhou, China, Vol. 1–3. South China University of Technology Press; Guangzhou: 2010: 1293-1297
  • 17 Baruah J, Nath BK, Sharma R, Kumar S, Deka RC, Baruah DC, Kalita E. Front. Energy Res. 2018; 6: 141
  • 18 Seidl PR, Goulart AK. Curr. Opin. Green Sustainable Chem. 2016; 2: 48
  • 19 Demirbas MF. Appl. Energy 2009; 86: S151
  • 20 Rothman GR, Calle HF. R. In The alcohol Economy: Fuel Ethanol and the Brazilian Experience . Francis Printer; London: 1983
  • 21 Behera SS, Ray RC. Bioethanol Production from Food Crops . Elsevier; Amsterdam: 2019. ISBN: 9780128137666 233-247
  • 22 Huber GW, Iborra S, Corma A. Chem. Rev. 2006; 106: 4044
  • 23 Gosselink RJ. A, Jong ED, Guran B, Abachelir A. Ind. Crops Prod. 2004; 20: 121
  • 24 Carlson TR, Jae J, Lin Y.-C, Tompsett GA, Huber GW. J. Catal. 2010; 270: 110
  • 25 Evans RJ, Milne TA, Soltys MN. J. Anal. Appl. Pyrolysis 1986; 9: 207
  • 26 Mosier N, Wyman CE, Dale BE, Elander RT, Lee YY, Holtzapple M, Ladisch MR. Bioresour. Technol. 2005; 96: 673
    • 27a Chatterjee C, Pong F, Sen A. Green Chem. 2015; 17: 40
    • 27b Climent MJ, Corma A, Iborra S. Green Chem. 2011; 13: 520
  • 28 Jia X, Peng X, Liu Y, Han Y. Biotechnol. Biofuels 2017; 10: 232
  • 29 Palkovits R, Tajvidi K, Procelewska J, Rinaldi R, Ruppert A. Green Chem. 2010; 12: 972
  • 30 Mittal A, Heidi M, Pilath M, Johnson DK. Energy Fuels 2020; 34: 3284
  • 31 van Putten R.-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG. Chem. Rev. 2013; 113: 1499
  • 32 Zhou CH, Beltramini JN, Fan YX, Lu GQ. Chem. Soc. Rev. 2008; 37: 527
  • 33 Xiao Y, Varma A. ACS Energy Lett. 2016; 1: 963
  • 34 Katryniok B, Kimura H, Skrzynsk E, Girardon JS, Fongarland P, Capron M, Ducoulombier R, Mimura N, Paul S, Dumeignil F. Green Chem. 2011; 13: 1960
  • 35 Alonso DM, Bond JQ, Dumesic JA. Green Chem. 2010; 12: 1493
  • 36 Dulie NW, Woldeyes B, Demsash HD, Jabasingh AS. Waste Biomass Valorization 2021; 12: 531
  • 37 Alamillo R, Tucker M, Chia M, Pagán-Torres Y, Dumesic J. Green Chem. 2012; 14: 1413
  • 38 Simakova OA, Murzina EV, Mäki-Arvela P, Leino A.-R, Campo BC, Kordás K, Willför SM, Salmi T, Murzin DY. J. Catal. 2011; 282: 54
  • 39 Davis SE, Ide MS, Davis RJ. Green Chem. 2013; 15: 17
  • 40 Ten Dam J, Hanefeld U. ChemSusChem 2011; 4: 1017
  • 41 Ruppert AM, Weinberg K, Palkovits R. Angew. Chem. Int. Ed. 2012; 51: 2564
  • 42 Takagaki A, Ohara M, Nishimura S, Ebitani K. Chem. Commun. 2009; 6276
  • 43 Tuteja J, Nishimura S, Ebitani K. Bull. Chem. Soc. Jpn. 2012; 85: 275
  • 44 Huang Y.-B, Fu Y. Green Chem. 2013; 15: 1095
  • 45 Torget RW, Kim JS, Lee YY. Ind. Eng. Chem. Res. 2000; 39: 2817
  • 46 Guo F, Fang Z, Xu CC, Smith RL. Jr. Prog. Energy Combust. Sci. 2012; 38: 672
  • 47 Vigier KD. O, Jérôme F. Top. Curr. Chem. 2010; 295: 63
  • 48 Shimizu K, Satsuma A. Energy Environ. Sci. 2011; 3140
  • 49 Dhepe PL. ChemSusChem 2008; 1: 969
  • 50 Takagaki A, Nishimura M, Nishimura S, Ebitani K. Chem. Lett. 2011; 40: 1195
  • 51 Guo F, Fang Z, Xu CC, Smith RL. Prog. Energy Combust. Sci. 2012; 38: 672
  • 52 Bootsma JA, Shanks BH. Appl. Catal., A 2007; 32: 44
  • 53 Takagaki A, Tagusagawa C, Domen K. Chem. Commun. 2008; 42: 536
  • 54 Zhang F, Deng X, Fang Z, Zeng HY, Tian XF, Kozinski JA. Petrochem. Technol. 2011; 40: 43
  • 55 Santo VD, Liguori F, Pirovano C, Guidotti M. Molecules 2010; 15: 3829
  • 56 Hara M. Energy Environ. Sci. 2010; 601
  • 57 Fukuoka A, Dhepe DL. Angew. Chem. Int. Ed. 2006; 45: 5161
  • 58 Van Dam HE, Kieboom AP. G, Van Bekkum H. Starch/Staerke 1986; 38: 95
  • 59 Cottier L, Descotes G, Neyret C, Nigay H. Ind. Aliment. Agric. 1989; 567
  • 60 Román-Leshkov Y, Chheda JN, Dumesic JA. Science 2006; 312: 1933
  • 61 Chheda JN, Román-Leshkov Y, Dumesic JA. Green Chem. 2007; 9: 342
  • 62 Zhao H, Holladay JE, Brown H, Zhang ZC. Science 2007; 316: 1597
  • 63 Su Y, Brown HM, Huang X, Zhou X.-D, Amonette JE, Zhang ZC. Appl. Catal., A 2009; 361: 117
  • 64 Binder JB, Raines RT. J. Am. Chem. Soc. 2009; 131: 1979
  • 65 Chaminand J, Djakovitch L, Gallezot P, Marion P, Pinel C, Rosier C. Green Chem. 2004; 6: 359
  • 66 Lahr DG, Shanks BH. Ind. Eng. Chem. Res. 2003; 42: 5467
  • 67 Miyazawa T, Kusunoki Y, Kunimori K, Tomishige K. J. Catal. 2006; 240: 213
  • 68 Tronconi E, Ferlazzo N, Forzatti P, Pasquon I, Casale B, Marini L. Chem. Eng. Sci. 1992; 47: 2451
  • 69 Xu W, Wang H, Liu X, Ren J, Wang Y, Lu G. Chem. Commun. 2011; 47: 3924
  • 70 Chatterjee M, Ishizaka T, Kawanami H. Green Chem. 2014; 16: 4734
  • 71 Nishimura S, Ikeda N, Ebitani K. Catal. Today 2014; 232: 89
  • 72 Mizugaki T, Yamakawa T, Nagatsu Y, Maeno Z, Mitsudome T, Jitsukawa K, Kaneda K. ACS Sustainable Chem. Eng. 2014; 2: 2243
  • 73 Merlo AB, Vetere V, Ruggera JF, Casella ML. Catal. Commun. 2009; 10: 1665
  • 74 Gupta NK, Nishimura S, Takagaki A, Ebitani K. Green Chem. 2011; 13: 824
  • 75 Carlini C, Patrono P, Galleti AM. R, Sbrana G, Zima V. Appl. Catal., A 2005; 289: 197
  • 76 Takagaki A, Takahashi M, Nishimura S, Ebitani K. ACS Catal. 2011; 1: 1562
  • 77 Hu W, Knight D, Lowry B, Varma A. Ind. Eng. Chem. Res. 2010; 49: 10876
  • 78 Painter RM, Pearson DM, Waymouth RM. Angew. Chem. Int. Ed. 2010; 49: 9456
  • 79 Tuteja J, Nishimura S, Ebitani K. Catal. Today 2016; 265: 231
  • 80 Alonso DM, Bond JQ, Dumesic JA. Green Chem. 2010; 12: 1493
  • 81 Jae JH, Tompsett GA, Lin YC, Carlson TR, Shen JC, Zhang TY, Yang B, Wyman CE, Conner WC, Huber GW. Energy Environ. Sci. 2010; 358