CC BY 4.0 · SynOpen 2023; 07(03): 322-352
DOI: 10.1055/a-2130-7319
review
Virtual Collection Click Chemistry and Drug Discovery

Recent Advances in the Synthesis of Bioactive Glycohybrids via Click-Chemistry

Kavita Singh
a   Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
,
Rajdeep Tyagi
a   Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
,
Vinay Kumar Mishra
b   Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
,
Ghanshyam Tiwari
b   Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
,
Ram Sagar
a   Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
b   Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
› Author Affiliations
Kavita, Rajdeep, and Vinay are thankful to the University Grants Commission (UGC), New Delhi for the Junior/Senior Research Fellowships.


Abstract

Carbohydrates, traditionally known for their energy-providing role, have gained significant attention in drug discovery due to their diverse bioactivities and stereodiversity. However, pure carbohydrate molecules often exhibit limited bioactivity and suboptimal chemical and physical characteristics. To address these challenges, functional groups with bioactive scaffolds have been incorporated into carbohydrate to enhance their bioactivity and improve their overall properties. Among the various synthetic methods available, click chemistry has emerged as a powerful tool for the synthesis of carbohydrate-containing bioactive scaffolds, known as glycohybrids. Click chemistry offers several advantages, including high chemo- and regioselectivity, mild reaction conditions, easy purification, and compatibility with multiple functional groups. In the present review, we have emphasized the recent advances and most pertinent research on the development of 1,2,3-triazole-containing glycohybrids using the click reaction, their biological evaluations and the structure-activity relationship during 2017–2023. These newly synthesised glycohybrids could potentially be developed as new chemical entities (NCE) in pharmaceutical chemistry and may encourage the use of carbohydrates in drug discovery processes.

1 Introduction

2 CuAAC Click Chemistry Mediated Synthesis of Triazole-Based Glycohybrids and their Biological Activities

3 Conclusions and Perspective



Publication History

Received: 13 June 2023

Accepted after revision: 03 July 2023

Accepted Manuscript online:
17 July 2023

Article published online:
10 August 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
  • 2 Lutz JF. Angew. Chem. Int. Ed. 2008; 47: 2182
  • 3 Carroux CJ, Moeker J, Motte J, Lopez M, Bornaghi LF, Katneni K, Ryan E, Morizzi J, Shackleford DM, Charman SA, Poulsen SA. Bioorg. Med. Chem. Lett. 2013; 23: 455
  • 4 Gil MV, Arévalo MJ, López Ó. Synthesis 2007; 1589
  • 5 Lamandé-Langle S, Collet C, Hensienne R, Vala C, Chrétien F, Chapleur Y, Mohamadi A, Lacolley P, Regnault V. Bioorg. Med. Chem. 2014; 22: 6672
  • 6 Ferreira S, Sodero AC. R, Cardoso MF. C, Lima ES, Kaiser CR, Silva FP, Ferreira VF. J. Med. Chem. 2010; 53: 2364
  • 7 Raic-Malic S, Mescic A. Curr. Med. Chem. 2015; 22: 1462
  • 8 Salmon AJ, Williams ML, Maresca A, Supuran CT, Poulsen SA. Bioorg. Med. Chem. Lett. 2011; 21: 6058
  • 9 Poonthiyil V, Lindhorst TK, Golovko VB, Fairbanks AJ. Beilstein J. Org. Chem. 2017; 14: 11
  • 10 Kushwaha D, Singh SK, Tiwari VK. Carbo-Click in Drug Discovery and Development: Opportunities and Challenges. In Carbohydrates in Drug Discovery and Development, Chap. 10. Elsevier Inc; Amsterdam: 2020: 403-450
  • 11 Rani A, Singh G, Singh A, Maqbool U, Kaur G, Singh J. RSC Adv. 2020; 10: 5610
  • 12 Kumari P, Narayana C, Tiwari G, Sagar R. Glycohybrid Molecules in Medicinal Chemistry: Present Status and Future Prospective. In Carbohydrates in Drug Discovery and Development, Chap. 11. Tiwari VK. Elsevier Inc; Amsterdam: 2020: 451-457
  • 13 Bertozzi CR, Kiessling LL. Science 2001; 291: 2357
  • 14 Narayana C, Kumari P, Tiwari G, Sagar R. Langmuir 2019; 35: 16803
  • 15 Zhang J, Garrossian M, Gardner D, Garrossian A, Chang YT, Kim YK, Chang CW. T. Bioorg. Med. Chem. Lett. 2008; 18: 1359
  • 16 Gouin SG, Bultel L, Falentin C, Kovensky J. Eur. J. Org. Chem. 2007; 1160
  • 17 Marchiori MF, Pires Souto DE, Bortot LO, Francisco Pereira J, Kubota LT, Cummings RD, Dias-Baruffi M, Carvalho I, Campo VL. Bioorg. Med. Chem. 2015; 23: 3414
  • 18 Marchiori MF, Riul TB, Bortot LO, Andrade P, Junqueira GG, Foca G, Doti N, Ruvo M, Dias-Baruffi M, Carvalho I, Campo VL. Bioorg. Med. Chem. 2017; 25: 6049
  • 19 Amdouni H, Robert G, Driowya M, Furstoss N, Métier C, Dubois A, Dufies M, Zerhouni M, Orange F, Lacas-Gervais S, Bougrin K, Martin AR, Auberger P, Benhida R. J. Med. Chem. 2017; 60: 1523
  • 20 Chen H, Hao L, Zhu M, Yang T, Wei S, Qin Z, Zhang P, Li X. Bioorg. Med. Chem. Lett. 2014; 24: 3426
  • 21 Hou Y, Xing S, Shao J, Yin Z, Hao L, Yang T, Zhang H, Zhu M, Chen H, Li X. Carbohydr. Res. 2016; 429: 105
  • 22 Chen H, Li R, Liu Z, Wei S, Zhang H, Li X. Carbohydr. Res. 2013; 365: 1
  • 23 Chen H, Yang T, Wei S, Zhang H, Li R, Qin Z, Li X. Bioorg. Med. Chem. Lett. 2012; 22: 7041
  • 24 Li X, Qin Z, Yang T, Zhang H, Wei S, Li C, Chen H, Meng M. Bioorg. Med. Chem. Lett. 2012; 22: 2712
  • 25 Yan L, Yin Z, Niu L, Shao J, Chen H, Li X. Bioorg. Med. Chem. Lett. 2018; 28: 425
  • 26 Temelkoff DP, Zeller M, Norris P. Carbohydr. Res. 2006; 341: 1081
  • 27 Gupta SJ, Dutta S, Gajbhiye RL, Jaisankar P, Sen AK. Bioorg. Chem. 2017; 72: 11
  • 28 Kunishima M, Kawachi C, Morita J, Terao K, Iwasaki F, Tani S. Tetrahedron 1999; 55: 13159
  • 29 Kunishima M, Kawachi C, Hioki K, Terao K, Tani S. Tetrahedron 2001; 57: 1551
  • 30 Yeoh KK, Butters TD, Wilkinson BL, Fairbanks AJ. Carbohydr. Res. 2009; 344: 586
  • 31 Pastuch-Gawolek G, Plesniak M, Komor R, Byczek-Wyrostek A, Erfurt K, Szeja W. Bioorg. Chem. 2017; 72: 80
  • 32 Miyake H, Otsuka C, Nishimura S, Nitta Y. J. Biochem. 2002; 131: 587
  • 33 Soli ED, Manoso AS, Patterson MC, DeShong P, Favor DA, Hirschmann R, Smith AB. J. Org. Chem. 1999; 64: 3171
  • 34 Quagliotto P, Viscardi G, Barolo C, D’Angelo D, Barni E, Compari C, Duce E, Fisicaro E. J. Org. Chem. 2005; 70: 9857
  • 35 Arévalo-Ruiz M, Doria F, Belmonte-Reche E, De Rache A, Campos-Salinas J, Lucas R, Falomir E, Carda M, Pérez-Victoria JM, Mergny JL, Freccero M, Morales JC. Chem. Eur. J. 2017; 23: 2157
  • 36 Thanh ND, Hai DS, Ha NT. T, Tung DT, Le CT, Van H TK, Toan VN, Toan DN, Dang LH. Bioorg. Med. Chem. Lett. 2019; 29: 164
  • 37 Boda SK, Pishka V, Lakshmi PV. A, Chinde S, Grover P. Chem. Biodiversity 2018; 15: e18000101 ; DOI: 10.1002/cbdv.201800101
  • 38 Mollashahi E, Nikraftar M. J. Saudi Chem. Soc. 2018; 22: 42
  • 39 Bhat AR, Dongre RS, Naikoo GA, Hassan IU, Ara T. Proficient Synthesis of Bioactive Annulated Pyrimidine Derivatives: A Review . Taibah University; Al Madinah Al Munawwarah: 2017
  • 40 Štimac A, Kobe J. Carbohydr. Res. 1992; 232: 359
  • 41 Rajesh Babu K, Madhavarao V. Der Chemica Sinica 2015; 6: 1
  • 42 Kosiova I, Kovackova S, Kois P. Tetrahedron 2007; 63: 312
  • 43 Von Pechmann H, Duisberg C. Ber. Dtsch. Chem. Ges. 1883; 16: 2119
  • 44 Srivastava S, Bimal D, Bohra K, Singh B, Ponnan P, Jain R, Varma-Basil M, Maity J, Thirumal M, Prasad AK. Eur. J. Med. Chem. 2018; 150: 268
  • 45 Breed DR, Thibault R, Xie F, Wang Q, Hawker CJ, Pine DJ. Langmuir 2009; 25: 4370
  • 46 Kuang GC, Guha PM, Brotherton WS, Simmons JT, Stankee LA, Nguyen BT, Clark RJ, Zhu L. J. Am. Chem. Soc. 2011; 133: 13984
  • 47 Starčević Š, Brožič P, Turk S, Cesar J, Lanišnik Rižner T, Gobec S. J. Med. Chem. 2011; 54: 248
  • 48 Regal KA, Schrag ML, Kent UM, Wienkers LC, Hollenberg PF. Chem. Res. Toxicol. 2000; 13: 262
  • 49 Singh DK, Nath M. Dyes Pigm. 2015; 121: 256
  • 50 Shin I, Jung HJ, Lee MR. Tetrahedron Lett. 2001; 42: 1325
  • 51 Wu Y, Pan M, Dai Y, Liu B, Cui J, Shi W, Qiu Q, Huang W, Qian H. Bioorg. Med. Chem. 2016; 24: 2287
  • 52 Krawczyk M, Pastuch-Gawolek G, Mrozek-Wilczkiewicz A, Kuczak M, Skonieczna M, Musiol R. Bioorg. Chem. 2019; 84: 326
  • 53 Smith G, Glaser M, Perumal M, De Nguyen Q, Shan B, Årstad E, Aboagye EO. J. Med. Chem. 2008; 51: 8057
  • 54 Ramakrishna KK. G, Thakur RK, Pasam VR, Pandey J, Mahar R, Shukla SK, Tamrakar AK, Tripathi RP. Tetrahedron 2017; 73: 187
  • 55 Thakur RK, Mishra A, Ramakrishna KK. G, Mahar R, Shukla SK, Srivastava AK, Tripathi RP. Tetrahedron 2014; 70: 8462
  • 56 Thakur RK, Joshi P, Baranwal P, Sharma G, Shukla SK, Tripathi R, Tripathi RP. Eur. J. Med. Chem. 2018; 155: 764
  • 57 Halay E, Ay E, Şalva E, Ay K, Karayıldırım T. Chem. Heterocycl. Compd. 2018; 54: 158
  • 58 Ay K, Halay E. J. Chem. 2013; 748161
  • 59 Doboszewski B. Carbohydr. Chem. 2002; 21: 79
  • 60 Gruner SA. W, Truffault V, Voll G, Locardi E, Stöckle M, Kessler H. Chem.–Eur. J. 2002; 8: 4365
  • 61 de Belder AN. Adv. Carbohydr. Chem. Biochem. 1977; 34: 179
  • 62 Lazrek HB, Taourirte M, Oulih T, Barascut JL, Imbach JL, Pannecouque C, Witrouw M, De Clercq E. Nucleosides, Nucleotides Nucleic Acids 2001; 20: 1949
  • 63 Igual MO, Nunes PS. G, da Costa RM, Mantoani SP, Tostes RC, Carvalho I. Carbohydr. Res. 2019; 471: 43
  • 64 Yan RB, Yang F, Wu Y, Zhang LH, Ye XS. Tetrahedron Lett. 2005; 46: 8993
  • 65 Gunther K, Schips C, Ziegler T. J. Carbohydr. Chem. 2008; 27: 446
  • 66 Carmona AT, Carrión-Jiménez S, Pingitore V, Moreno-Clavijo E, Robina I, Moreno-Vargas AJ. Eur. J. Med. Chem. 2018; 151: 765
  • 67 Elías-Rodríguez P, Moreno-Clavijo E, Carmona AT, Moreno-Vargas AJ, Robina I. Org. Biomol. Chem. 2014; 12: 5898
  • 68 Moreno-Vargas AJ, Robina I, Demange R, Vogel P. Helv. Chim. Acta 2003; 86: 1894-1913
  • 69 Slack TJ, Li W, Shi D, McArthur JB, Zhao G, Li Y, Xiao A, Khedri Z, Yu H, Liu Y, Chen X. Bioorg. Med. Chem. 2018; 26: 5751
  • 70 Maier MA, Yannopoulos CG, Mohamed N, Roland A, Fritz H, Mohan V, Just G, Manoharan M. Bioconjugate Chem. 2003; 14: 18
  • 71 Song Y, Xin Z, Wan Y, Li J, Ye B, Xue X. Eur. J. Med. Chem. 2015; 90: 695
  • 72 Wang GQ, Yan LL, Wang QA. Heterocycl. Commun. 2018; 24: 119
  • 73 Fernandez-Megia E, Correa J, Rodríguez-Meizoso I, Riguera R. Macromolecules 2006; 39: 2113
  • 74 Zi CT, Liu ZH, Li GT, Li Y, Zhou J, Ding ZT, Hu JM, Jiang ZH. Molecules 2015; 20: 3255
  • 75 Pietrzik N, Schmollinger D, Ziegler T. Beilstein J. Org. Chem. 2008; 4: 2
  • 76 Percec V, Leowanawat P, Sun HJ, Kulikov O, Nusbaum CD, Tran TM, Bertin A, Wilson DA, Peterca M, Zhang S, Kamat NP, Vargo K, Moock D, Johnston ED, Hammer DA, Pochan DJ, Chen Y, Chabre YM, Shiao TC, Bergeron-Brlek M, André S, Roy R, Gabius HJ, Heiney PA. J. Am. Chem. Soc. 2013; 135: 9055
  • 77 Michel O, Ravoo BJ. Langmuir 2008; 24: 12116
  • 78 Wagner R, Richter L, Weiland B, Reiners J, Weissmüller J. Appl. Organomet. Chem. 1996; 10: 437
  • 79 Zuffo M, Stucchi A, Campos-Salinas J, Cabello-Donayre M, Martínez-García M, Belmonte-Reche E, Pérez-Victoria JM, Mergny JL, Freccero M, Morales JC, Doria F. Eur. J. Med. Chem. 2019; 163: 54
  • 80 Doria F, Nadai M, Sattin G, Pasotti L, Richter SN, Freccero M. Org. Biomol. Chem. 2012; 10: 3830
  • 81 Šamšulová V, Poláková M, Horák R, Šedivá M, Kvapil L, Hradil P. J. Mol. Struct. 2019; 1177: 16
  • 82 Rohilla S, Patel SS, Jain N. Eur. J. Org. Chem. 2016; 847
  • 83 Li H.-n, Wang H, Wang Z.-p, Yan H.-n, Zhang M, Liu Y, Cheng M.-s. Bioorg. Med. Chem. 2018; 26: 4025
  • 84 Valença WO, Baiju TV, Brito FG, Araujo MH, Pessoa C, Cavalcanti BC, de Simone CA, Jacob C, Namboothiri IN. N, da Silva EN. Júnior. ChemistrySelect 2017; 2: 4301
  • 85 Raja R, Kandhasamy S, Perumal PT, SubbiahPandi A, Stoeckli-Evans H. Acta Crystallogr., Sect. E: Struct. Rep. Online 2015; 71: o231
  • 86 Tang Y, Zhang S, Chang Y, Fan D, De Agostini A, Zhang L, Jiang T. J. Med. Chem. 2018; 61: 2937
  • 87 Ibatullin FM, Shabalin KA. Synth. Commun. 2000; 30: 2819
  • 88 Ottoni FM, Gomes ER, Pádua RM, Oliveira MC, Silva IT, Alves RJ. Bioorg. Med. Chem. Lett. 2020; 30: 126817
  • 89 Martínez-Bailén M, Carmona AT, Moreno-Clavijo E, Robina I, Ide D, Kato A, Moreno-Vargas AJ. Eur. J. Med. Chem. 2017; 138: 532
  • 90 Martínez-Bailén M, Carmona AT, Patterson-Orazem AC, Lieberman RL, Ide D, Kubo M, Kato A, Robina I, Moreno-Vargas AJ. Bioorg. Chem. 2019; 86: 652
  • 91 Qiu X, Qing F. J. Org. Chem. 2005; 70: 3826
  • 92 Tsou EL, Yeh YT, Liang PH, Cheng WC. Tetrahedron 2009; 65: 93
  • 93 Dupuis SN, Robertson AW, Veinot T, Monro SM. A, Douglas SE, Syvitski RT, Goralski KB, McFarland SA, Jakeman DL. Chem. Sci. 2012; 3: 1640
  • 94 Thanh ND, Hai DS, Bich VT. N, Hien PT. T, Duyen NT. K, Mai NT, Dung TT, Toan VN, Van H TK, Dang LH, Toan DN, Van T TT. Eur. J. Med. Chem. 2019; 167: 454
  • 95 Anderson JT, Ting AE, Boozer S, Brunden KR, Danzig J, Dent T, Harrington JJ, Murphy SM, Perry R, Raber A, Rundlett SE, Wang J, Wang N, Bennani YL. J. Med. Chem. 2005; 48: 2756
  • 96 Mishra KB, Mishra RC, Tiwari VK. RSC Adv. 2015; 5: 51779
  • 97 Mishra KB, Tiwari N, Bose P, Singh R, Rawat AK, Singh SK, Mishra RC, Singh RK, Tiwari VK. ChemistrySelect 2019; 4: 2644
  • 98 Paulsen H, Györgydeák Z, Friedmann M. Chem. Ber. 1974; 107: 1568
  • 99 Kumari P, Dubey S, Venkatachalapathy S, Narayana C, Gupta A, Sagar R. New J. Chem. 2019; 43: 18590
  • 100 Rao CP, Srimannarayana G. Synth. Commun. 1990; 20: 535
  • 101 Anand N, Jaiswal N, Pandey SK, Srivastava AK, Tripathi RP. Carbohydr. Res. 2011; 346: 16
  • 102 Gunasekera DS. Synlett 2012; 573
  • 103 Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X. Chem. Rev. 2016; 116: 3086
  • 104 Zhang WQ, He Y, Yu Q, Liu HP, Wang DM, Li XB, Luo J, Meng X, Qin HJ, Lucchi NW, Udhayakumar V, Iyer SS, Yang Y, Yu P. Eur. J. Med. Chem. 2016; 121: 640
  • 105 Yang Y, Liu HP, Yu Q, Yang MB, Wang DM, Jia TW, He HJ, He Y, Xiao HX, Iyer SS, Fan ZC, Meng X, Yu P. Carbohydr. Res. 2016; 435: 68
  • 106 Meng X, Yang M, Li Y, Li X, Jia T, He H, Yu Q, Guo N, He Y, Yu P, Yang Y. Chin. Chem. Lett. 2018; 29: 76
  • 107 Yang Y, He Y, Li X, Dinh H, Iyer SS. Bioorg. Med. Chem. Lett. 2014; 24: 636
  • 108 Yan ZL, Liu AY, Wei XX, Zhang Z, Qin L, Yu Q, Yu P, Lu K, Yang Y. Carbohydr. Res. 2019; 477: 32
  • 109 Murray AB, Quadri M, Li H, McKenna R, Horenstein NA. Carbohydr. Res. 2019; 476: 65
  • 110 Mönch B, Gebert A, Emmerling F, Becker R, Nehls I. Carbohydr. Res. 2012; 352: 186
  • 111 Göllner C, Philipp C, Dobner B, Sippl W, Schmidt M. Carbohydr. Res. 2009; 344: 1628
  • 112 Khalil KD, Riyadh SM, Gomha SM, Ali I. Int. J. Biol. Macromol. 2019; 130: 928
  • 113 Carta F, Di Cesare Mannelli L, Pinard M, Ghelardini C, Scozzafava A, McKenna R, Supuran CT. Bioorg. Med. Chem. 2015; 23: 1828
  • 114 Hao S, Cheng X, Ran An XW, Xu H, Guo M, Li C, Wang Y, Hou Z, Guo C. Bioorg. Chem. 2020; 104: 104237
  • 115 Thomas GB, Rader LH, Park J, Abezgauz L, Danino D, Deshong P, English DS. J. Am. Chem. Soc. 2009; 131: 5471
  • 116 Miyake H, Otsuka C, Nishimura S, Nitta Y. J. Biochem. 2002; 131: 587-591
  • 117 Györgydeàk Z, Szilàgyi L. Liebigs Ann. Chem. 1985; 1985: 103
  • 118 Soli ED, Manoso AS, Patterson MC, Deshong P, Favor DA, Hirschmann R, Smith AB. J. Org. Chem. 1999; 64: 3171
  • 119 Floyd N, Vijayakrishnan B, Koeppe JR, Davis BG. Angew. Chem. Int. Ed. 2009; 48: 7798
  • 120 Dahmen J, Frejd T, Gronberg G, Lave T, Magnusson G, Noori G. Carbohydr. Res. 1983; 116: 303
  • 121 Dowlut M, Hall DG, Hindsgaul O. J. Org. Chem. 2005; 70: 9809
  • 122 Schmidt RR. Angew. Chem. Int. Ed. Engl. 1986; 25: 212
  • 123 Excoffier G, Gagnaire D, Utille JP. Carbohydr. Res. 1975; 39: 368
  • 124 Arévalo-Ruiz M, Amrane S, Rosu F, Belmonte-Reche E, Peñalver P, Mergny JL, Morales JC. Bioorg. Chem. 2020; 99: 103786
  • 125 Elkanzi NA. A, El-Sofany WI, Gaballah ST, Mohamed AM, Kutkat O, El-Sayed WA. Russ. J. Gen. Chem. 2019; 89: 1896
  • 126 El Malah T, Nour HF, Satti AA. E, Hemdan BA, El-Sayed WA. Molecules 2020; 25: 790
  • 127 Krawczyk M, Pastuch-Gawołek G, Hadasik A, Erfurt K. Molecules 2020; 25: 4174
  • 128 Zhu X, Schmidt RR. J. Org. Chem. 2004; 69: 1081
  • 129 Krawczyk M, Pastuch-Gawołek G, Pluta A, Erfurt K, Domiński A, Kurcok P. Molecules 2019; 24: 4181
  • 130 Pietrzik N, Schips C, Ziegler T. Synthesis 2008; 519
  • 131 Cicchillo RM, Norris P. Carbohydr. Res. 2000; 328: 431
  • 132 Chittaboina S, Xie F, Wang Q. Tetrahedron Lett. 2005; 46: 2331
  • 133 Conte G, Cristiano R, Ely F, Gallardo H. Synth. Commun. 2006; 36: 951
  • 134 Kuijpers BH. M, Groothuys S, Keereweer AR, Quaedflieg PJ. L. M, Blaauw RH, Van Delft FL, Rutjes FP. J. T. Org. Lett. 2004; 6: 3123
  • 135 Worrell BT, Malik JA, Fokin VV. Science 2013; 340: 457
  • 136 Shin JA, Lim YG, Lee KH. J. Org. Chem. 2012; 77: 4117
  • 137 Boren BC, Narayan S, Rasmussen LK, Zhang L, Zhao H, Lin Z, Jia G, Fokin VV. J. Am. Chem. Soc. 2008; 130: 8923
  • 138 Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
  • 139 Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
  • 140 Kotammagari TK, Paul S, Barik GK, Santra MK, Bhattacharya AK. Org. Biomol. Chem. 2020; 18: 2252
  • 141 Cui HL, Tanaka F. Chem. Eur. J. 2013; 19: 6213
  • 142 Mishra KB, Tiwari VK. ChemistrySelect 2016; 1: 3693
  • 143 Kushwaha D, Tiwari VK. J. Heterocycl. Chem. 2017; 54: 2454
  • 144 Mishra N, Agrahari AK, Bose P, Singh SK, Singh AS, Tiwari VK. Sci. Rep. 2020; 10: 3586
  • 145 Chaidam S, Saehlim N, Athipornchai A, Sirion U, Saeeng R. Bioorg. Med. Chem. Lett. 2021; 50: 128331
  • 146 De Ruysscher D, Pang L, Lenders SM. G, Cappoen D, Cos P, Rozenski J, Strelkov SV, Weeks SD, Van Aerschot A. Eur. J. Med. Chem. 2021; 211: 113021
  • 147 Liang PH, Cheng WC, Lee YL, Yu HP, Wu YT, Lin YL, Wong CH. ChemBioChem 2006; 7: 165
  • 148 Pingitore V, Martínez-Bailén M, Carmona AT, Mészáros Z, Kulik N, Slámová K, Křen V, Bojarová P, Robina I, Moreno-Vargas AJ. Bioorg. Chem. 2022; 120: 105650 ; DOI 10.1016/j.bioorg.2022.105650
  • 149 Kaur Gulati H, Choudhary S, Kumar N, Ahmed A, Bhagat K, Vir Singh J, Singh A, Kumar A, Singh Bedi PM, Singh H, Mukherjee D. Bioorg. Chem. 2022; 118: 105479
  • 150 Yang X, Wang ZP, Xiang S, Wang D, Zhao Y, Luo D, Qiu Y, Huang C, Guo J, Dai Y, Zhang SL, He Y. J. Med. Chem. 2022; 65: 8040
  • 151 Xu S, Nguyen T, Pomilio I, Vitale MC, Velu SE. Tetrahedron 2014; 70: 5928
  • 152 Yarlagadda V, Konai MM, Manjunath GB, Ghosh C, Haldar J. J. Antibiot. 2015; 68: 302
  • 153 Park S, Shin I. Org. Lett. 2007; 9: 1675
  • 154 Morales-Sanfrutos J, Lopez-Jaramillo J, Ortega-Muñoz M, Megia-Fernandez A, Perez-Balderas F, Hernandez-Mateo F, Santoyo-Gonzalez F. Org. Biomol. Chem. 2010; 8: 667
  • 155 Belmonte-Reche E, Benassi A, Peñalver P, Cucchiarini A, Guédin A, Mergny JL, Rosu F, Gabelica V, Freccero M, Doria F, Morales JC. Eur. J. Med. Chem. 2022; 232: 114183 ; DOI 10.1016/j.ejmech.2022.114183
  • 156 Lei Z, Wang J, Mao G, Wen Y, Tian Y, Wu H, Li Y, Xu H. J. Agric. Food Chem. 2014; 62: 6065
  • 157 Zemplén G, Pacsu E. Ber. Dtsch. Chem. Ges. (A B Ser.) 1929; 62: 1613
  • 158 Işılar Ö, Bulut A, Sahin Yaglioglu A, Demirtaş İ, Arat E, Türk M. Carbohydr. Res. 2020; 492: 3
  • 159 Campo VL, Carvalho I, Da Silva CH. T. P, Schenkman S, Hill L, Nepogodieva SA, Field RA. Chem. Sci. 2010; 1: 507
  • 160 Wang M, Xu Z, Tu P, Yu X, Xiao S, Yang M. Bioorg. Med. Chem. Lett. 2004; 14: 2585
  • 161 Srinivasachari S, Liu Y, Zhang G, Prevette L, Reineke TM. J. Am. Chem. Soc. 2006; 128: 8176
  • 162 Laurent P, Razafindralambo H, Wathelet B, Blecker C, Wathelet JP, Paquot M. J. Surfactants Deterg. 2011; 14: 51
  • 163 Domińska M, Pastuch-Gawołek G, Skonieczna M, Szeja W, Domiński A, Kurcok P. Molecules 2022; 27: 6918 ; DOI: 10.3390/molecules27206918
  • 164 Bhunia D, Pallavi PM. C, Bonam SR, Reddy SA, Verma Y, Halmuthur MS. K. Arch. Pharm. 2015; 348: 689
  • 165 Hodoň J, Frydrych I, Trhlíková Z, Pokorný J, Borková L, Benická S, Vlk M, Lišková B, Kubíčková A, Medvedíková M, Pisár M, Šarek J, Das V, Ligasová A, Koberna K, Džubák P, Hajdúch M, Urban M. Eur. J. Med. Chem. 2022; 243: 114777 ; DOI: 10.1016/j.ejmech.2022.114777
  • 166 Wang S, Chen Y, Xia C, Yang C, Chen J, Hai L, Wu Y, Yang Z. Bioorg. Med. Chem. 2022; 73: 117008
  • 167 Kumar BS, Lakshmi PV. A, Veena BS, Sujatha E. Russ. J. Gen. Chem. 2017; 87: 829
  • 168 Thanh ND, Hai DS, Huyen LT, Giang NT. K, Ha NT. T, Tung DT, Le CT, Van H TK, Toan VN. J. Mol. Struct. 2023; 1271: 133932
  • 169 Santoso KT, Cheung CY, Hards K, Cook GM, Stocker BL, Timmer MS. M. Chem. Asian J. 2019; 14: 1278
  • 170 Khattab RR, Alshamari AK, Hassan AA, Elganzory HH, El-Sayed WA, Awad HM, Nossier ES, Hassan NA. J. Enzyme Inhib. Med. Chem. 2021; 36: 504
  • 171 Zornik D, Meudtner RM, Ela Malah T, Thiele CM, Hecht S. Chem. Eur. J. 2011; 17: 1473
  • 172 El Malah T, Nour HF. Aust. J. Chem. 2018; 71: 463
  • 173 El Malah T, Ciesielski A, Piot L, Troyanov SI, Mueller U, Weidner S, Samorì P, Hecht S. Nanoscale 2012; 4: 467
  • 174 Abdelgawad MA, Bukhari SN. A, Musa A, Elmowafy M, Nayl AE. A. A, El-Ghorab AH, Sadek Abdel-Bakky M, Omar HA, Hadal Alotaibi N, Hassan HM, Ghoneim MM, Bakr RB. Bioorg. Chem. 2023; 133: 106404