Rofo 2024; 196(06): 582-590
DOI: 10.1055/a-2185-8714
Review

Inzidentelle Lungenrundherde – aktuelle Leitlinien und Management

Article in several languages: English | deutsch
1   Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
2   Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
,
1   Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
2   Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
› Author Affiliations

Zusammenfassung

Hintergrund Aufgrund der immer häufiger durchgeführten hochaufgelösten Schnittbildgebung steigt die Anzahl der jährlich detektierten inzidentellen Lungenrundherde. Obwohl die allermeisten inzidentellen Lungenrundherde gutartig sind, ließen sich durch eine konsequente Nachverfolgung viele frühe Lungenkarzinome diagnostizieren. Aus vielfältigen Gründen werden die existierenden Handlungsempfehlungen jedoch häufig nicht korrekt umgesetzt. Daher werden Verbesserungspotenziale auf den Ebenen der Kompetenz, Kommunikation, Struktur und des Prozesses beschrieben.

Methode In diesem Artikel werden die Handlungsempfehlungen für inzidentelle Lungenrundherde aus der aktuellen S3-Leitlinie des Lungenkarzinoms (Juli 2023) vorgestellt. Die international etablierten Handlungsempfehlungen (BTS-Guidelines und Fleischner-Kriterien) werden verglichen und weitere Studien zum optimierten Management wurden nach systematischer Literaturrecherche auf PubMed eingeschlossen.

Ergebnisse und Schussfolgerung Insbesondere KI-basierte Softwarelösungen sind vielversprechend, da sie gleich auf mehreren Ebenen unterstützend eingesetzt werden und zu einem einfacheren und automatisierten Management führen können. Um allerdings auch in der klinischen Routine anwendbar zu sein, muss sich Software gut in den radiologischen Arbeitsablauf einfügen und miteinander integriert werden. Darüber hinaus haben sich in den USA sogenannte „Lung Nodule Management“-Programme bzw. -Kliniken etabliert, die einen standardisierten Ablauf auf hohem Qualitätsniveau für Patienten mit inzidentell oder in der Früherkennung detektierten Lungenrundherden bieten. Gegebenenfalls könnten auch in Deutschland in einem zukünftigen Früherkennungsprogramm Strukturen geschaffen werden, in die auch Patienten mit inzidentellen Lungenrundherden eingebunden werden könnten.

Kernaussagen

  • Inzidentelle Lungenrundherde sind häufig, aber werden oft nicht leitliniengerecht aufgearbeitet

  • Die aktualisierte S3-Leitlinie des Lungenkarzinoms umfasst nun auch Handlungsempfehlungen für inzidentelle Lungenrundherde

  • Kompetenz-, Kommunikations-, Struktur- und Prozessebene bieten zahlreiche Verbesserungspotenziale für das Rundherdmanagement der IPNs

Zitierweise

  • Glandorf J, Vogel-Claussen J, . Incidental pulmonary nodules – current guidelines and management. Fortschr Röntgenstr 2024; 196: 582 – 590



Publication History

Received: 06 July 2023

Accepted: 20 September 2023

Article published online:
08 December 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF): Prävention, Diagnostik, Therapie und Nachsorge des Lungenkarzinoms (Langversion) 2.2, 2023, AWMF-Registernummer: 020/007OL. 2022
  • 2 MacMahon H, Naidich DP, Goo JM. et al. Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017. Radiology 2017; 284: 228-243
  • 3 Callister MEJ, Baldwin DR, Akram AR. et al. British Thoracic Society guidelines for the investigation and management of pulmonary nodules: accredited by NICE. Thorax 2015; 70: ii1-ii54
  • 4 Gould MK, Tang T, Liu I-LA. et al. Recent Trends in the Identification of Incidental Pulmonary Nodules. Am. J. Respir. Crit. Care Med 2015; 192: 1208-1214
  • 5 Hendrix W, Rutten M, Hendrix N. et al. Trends in the incidence of pulmonary nodules in chest computed tomography: 10-year results from two Dutch hospitals. Eur. Radiol 2023; DOI: 10.1007/s00330-023-09826-3.
  • 6 Erdmann F, Spix C, Katalinic A. et al. Krebs in Deutschland für 2017/2018. 2021
  • 7 de Koning HJ, van der Aalst CM, de Jong PA. et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N. Engl. J. Med 2020; 382: 503-513
  • 8 Becker N, Motsch E, Trotter A. et al. Lung cancer mortality reduction by LDCT screening—Results from the randomized German LUSI trial. Int. J. Cancer 2020; 146: 1503-1513
  • 9 The NationalLung Screening Trial Research Team. Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. N. Engl. J. Med 2011; 365: 395-409
  • 10 Horeweg N, van Rosmalen J, Heuvelmans MA. et al. Lung cancer probability in patients with CT-detected pulmonary nodules: a prespecified analysis of data from the NELSON trial of low-dose CT screening. Lancet Oncol 2014; 15: 1332-1341
  • 11 Paci E, Puliti D, Lopes Pegna A. et al. Mortality, survival and incidence rates in the ITALUNG randomised lung cancer screening trial. Thorax 2017; 72: 825-831
  • 12 LeMense GP, Waller EA, Campbell C. et al. Development and outcomes of a comprehensive multidisciplinary incidental lung nodule and lung cancer screening program. BMC Pulm. Med 2020; 20: 115
  • 13 Smeltzer M, Liao W, Meadows-Taylor M. et al. Early detection of lung cancer with an incidental lung nodule program (ILNP). J. Clin. Oncol 2021; 39: 8553-8553
  • 14 Tammemägi MC, Katki HA, Hocking WG. et al. Selection Criteria for Lung-Cancer Screening. N. Engl. J. Med 2013; 368: 728-736
  • 15 Siegel DA, Fedewa SA, Henley SJ. et al. Proportion of Never Smokers Among Men and Women With Lung Cancer in 7 US States. JAMA Oncol 2021; 7: 302
  • 16 Pham D, Bhandari S, Pinkston C. et al. Lung Cancer Screening Registry Reveals Low-dose CT Screening Remains Heavily Underutilized. Clin. Lung Cancer 2020; 21: e206-e211
  • 17 Doria-Rose VP, White MC, Klabunde CN. et al. Use of Lung Cancer Screening Tests in the United States: Results from the 2010 National Health Interview Survey. Cancer Epidemiol. Biomarkers Prev 2012; 21: 1049-1059
  • 18 Jemal A, Fedewa SA. Lung Cancer Screening With Low-Dose Computed Tomography in the United States—2010 to 2015. JAMA Oncol 2017; 3: 1278
  • 19 Osarogiagbon RU, Liao W, Faris NR. et al. Lung Cancer Diagnosed Through Screening, Lung Nodule, and Neither Program: A Prospective Observational Study of the Detecting Early Lung Cancer (DELUGE) in the Mississippi Delta Cohort. J. Clin. Oncol 2022; 40: 2094-2105
  • 20 Hedstrom GH, Hooker ER, Howard M. et al. The Chain of Adherence for Incidentally Detected Pulmonary Nodules after an Initial Radiologic Imaging Study: A Multisystem Observational Study. Ann. Am. Thorac. Soc 2022; 19: 1379-1389
  • 21 McDonald JS, Koo CW, White D. et al. Addition of the Fleischner Society Guidelines to Chest CT Examination Interpretive Reports Improves Adherence to Recommended Follow-up Care for Incidental Pulmonary Nodules. Acad. Radiol 2017; 24: 337-344
  • 22 Blagev DP, Lloyd JF, Conner K. et al. Follow-up of Incidental Pulmonary Nodules and the Radiology Report. J. Am. Coll. Radiol 2014; 11: 378-383
  • 23 Wormanns D, Hamer O. Glossar thoraxradiologischer Begriffe entsprechend der Terminologie der Fleischner Society. Fortschr Röntgenstr 2015; 187: 638-661
  • 24 MacMahon H, Austin JHM, Gamsu G. et al. Guidelines for management of small pulmonary nodules detected on CT scans: A statement from the Fleischner Society. Radiology 2005; 237: 395-400
  • 25 Marrer É, Jolly D, Arveux P. et al. Incidence of solitary pulmonary nodules in Northeastern France: a population-based study in five regions. BMC Cancer 2017; 17: 47
  • 26 He Y-T, Zhang Y-C, Shi G-F. et al. Risk factors for pulmonary nodules in north China: A prospective cohort study. Lung Cancer 2018; 120: 122-129
  • 27 Hammerschlag G, Cao J, Gumm K. et al. Prevalence of incidental pulmonary nodules on computed tomography of the thorax in trauma patients. Intern. Med. J 2015; 45: 630-633
  • 28 Iñiguez CB, Kwon N, Jacobson F. et al. Estimating incidence of solitary pulmonary nodules: Novel methods using claims data to answer unknown epidemiological questions. Chest 2018; 154: 661A
  • 29 McWilliams A, Tammemagi MC, Mayo JR. et al. Probability of Cancer in Pulmonary Nodules Detected on First Screening CT. N. Engl. J. Med 2013; 369: 910-919
  • 30 Hasegawa M, Sone S, Takashima S. et al. Growth rate of small lung cancers detected on mass CT screening. Br. J. Radiol 2000; 73: 1252-1259
  • 31 Yankelevitz DF, Yip R, Smith JP. et al. CT Screening for Lung Cancer: Nonsolid Nodules in Baseline and Annual Repeat Rounds. Radiology 2015; 277: 555-564
  • 32 Woodring JH, Fried AM. Significance of wall thickness in solitary cavities of the lung: a follow-up study. Am. J. Roentgenol 1983; 140: 473-474
  • 33 Tan Y, Gao J, Wu C. et al. CT Characteristics and Pathologic Basis of Solitary Cystic Lung Cancer. Radiology 2019; 291: 495-501
  • 34 Fintelmann FJ, Brinkmann JK, Jeck WR. et al. Lung Cancers Associated With Cystic Airspaces: Natural History, Pathologic Correlation, and Mutational Analysis. J. Thorac. Imaging 2017; 32: 176-188
  • 35 Mascalchi M, Attinà D, Bertelli E. et al. Lung Cancer Associated With Cystic Airspaces. J. Comput. Assist. Tomogr 2015; 39: 102-108
  • 36 Sheard S, Moser J, Sayer C. et al. Lung Cancers Associated with Cystic Airspaces: Underrecognized Features of Early Disease. RadioGraphics 2018; 38: 704-717
  • 37 Mets OM, Schaefer-Prokop CM, de Jong PA. Cyst-related primary lung malignancies: an important and relatively unknown imaging appearance of (early) lung cancer. Eur. Respir. Rev 2018; 27: 180079
  • 38 Kwak N, Park C-M, Lee J. et al. Lung cancer risk among patients with combined pulmonary fibrosis and emphysema. Respir. Med 2014; 108: 524-530
  • 39 Herder GJ, van Tinteren H, Golding RP. et al. Clinical Prediction Model To Characterize Pulmonary Nodules. Chest 2005; 128: 2490-2496
  • 40 Swensen SJ, Silverstein MD, Ilstrup DM. et al. The probability of malignancy in solitary pulmonary nodules. Application to small radiologically indeterminate nodules. Arch. Intern. Med 1997; 157: 849-855
  • 41 Schroeder T, Ruehm SG, Debatin JF. et al. Detection of Pulmonary Nodules Using a 2D HASTE MR Sequence: Comparison with MDCT. Am. J. Roentgenol 2005; 185: 979-984
  • 42 Vogt FM, Herborn CU, Hunold P. et al. HASTE MRI Versus Chest Radiography in the Detection of Pulmonary Nodules: Comparison with MDCT. Am. J. Roentgenol 2004; 183: 71-78
  • 43 Li Q, Zhu L, Stackelberg O von. et al. MRI Compared with Low-Dose CT for Incidental Lung Nodule Detection in COPD: A Multicenter Trial. Radiol. Cardiothorac. Imaging 2023; 5 DOI: 10.1148/ryct.220176.
  • 44 Mori T, Nomori H, Ikeda K. et al. Diffusion-Weighted Magnetic Resonance Imaging for Diagnosing Malignant Pulmonary Nodules/Masses: Comparison with Positron Emission Tomography. J. Thorac. Oncol 2008; 3: 358-364
  • 45 Zou Y, Zhang M, Wang Q. et al. Quantitative Investigation of Solitary Pulmonary Nodules: Dynamic Contrast-Enhanced MRI and Histopathologic Analysis. Am. J. Roentgenol 2008; 191: 252-259
  • 46 Mamata H, Tokuda J, Gill RR. et al. Clinical application of pharmacokinetic analysis as a biomarker of solitary pulmonary nodules: Dynamic contrast-enhanced MR imaging. Magn. Reson. Med 2012; 68: 1614-1622
  • 47 American College of Radiology Committee on Lung-RADS®. Lung-RADS Assessment Categories 2022. 2022
  • 48 Hein P, Romano V, Rogalla P. et al. Linear and Volume Measurements of Pulmonary Nodules at Different CT Dose Levels – Intrascan and Interscan Analysis. Fortschr Röntgenstr 2009; 181: 24-31
  • 49 Ko JP, Berman EJ, Kaur M. et al. Pulmonary Nodules: Growth Rate Assessment in Patients by Using Serial CT and Three-dimensional Volumetry. Radiology 2012; 262: 662-671
  • 50 Revel M-P, Merlin A, Peyrard S. et al. Software Volumetric Evaluation of Doubling Times for Differentiating Benign Versus Malignant Pulmonary Nodules. Am. J. Roentgenol 2006; 187: 135-142
  • 51 Kostis WJ, Yankelevitz DF, Reeves AP. et al. Small Pulmonary Nodules: Reproducibility of Three-dimensional Volumetric Measurement and Estimation of Time to Follow-up CT. Radiology 2004; 231: 446-452
  • 52 Ashraf H, de Hoop B, Shaker SB. et al. Lung nodule volumetry: segmentation algorithms within the same software package cannot be used interchangeably. Eur. Radiol 2010; 20: 1878-1885
  • 53 de Hoop B, Gietema H, van Ginneken B. et al. A comparison of six software packages for evaluation of solid lung nodules using semi-automated volumetry: What is the minimum increase in size to detect growth in repeated CT examinations. Eur. Radiol 2009; 19: 800-808
  • 54 Bundesamt für Strahlenschutz, Bundesamt für Strahlenschutz (BfS). Lungenkrebsfrüherkennung mittels Niedrigdosis-Computertomographie – Wissenschaftliche Bewertung des Bundesamtes für Strahlenschutz gemäß § 84 Absatz 3 Strahlenschutzgesetz. 2021
  • 55 Rampinelli C, Cicchetti G, Cortese G. et al. Management of incidental pulmonary nodule in CT: a survey by the Italian College of Chest Radiology. Radiol. Med 2019; 124: 602-612
  • 56 Umscheid CA, Wilen J, Garin M. et al. National Survey of Hospitalists’ Experiences with Incidental Pulmonary Nodules. J. Hosp. Med 2019; DOI: 10.12788/jhm.3115.
  • 57 Eisenberg RL, Bankier AA, Boiselle PM. Compliance with Fleischner Society Guidelines for Management of Small Lung Nodules: A Survey of 834 Radiologists. Radiology 2010; 255: 218-224
  • 58 Esmaili A, Munden RF, Mohammed T-LH. Small Pulmonary Nodule Management. J. Thorac. Imaging 2011; 26: 27-31
  • 59 Eisenberg RL. Ways to Improve Radiologists’ Adherence to Fleischner Society Guidelines for Management of Pulmonary Nodules. J. Am. Coll. Radiol 2013; 10: 439-441
  • 60 Elias RM, Sykes A-MG, Knudsen JM. Impact of A Standardized Recommendation and Electronic Prompts on Follow-Up of Indeterminate Pulmonary Nodules Found on Computed Tomography. J. Pulm. Respir. Med 2012; 02 DOI: 10.4172/2161-105X.1000113.
  • 61 Aase A, Fabbrini AE, White KM. et al. Implementation of a Standardized Template for Reporting of Incidental Pulmonary Nodules: Feasibility, Acceptability, and Outcomes. J. Am. Coll. Radiol 2020; 17: 216-223
  • 62 Woloshin S, Schwartz LM, Dann E. et al. Using Radiology Reports to Encourage Evidence-based Practice in the Evaluation of Small, Incidentally Detected Pulmonary Nodules. A Preliminary Study. Ann. Am. Thorac. Soc 2014; 11: 211-214
  • 63 Pyenson BS, Bazell CM, Bellanich MJ. et al. No Apparent Workup for most new Indeterminate Pulmonary Nodules in US Commercially-Insured Patients. J. Heal. Econ. Outcomes Res 2019; 6: 118-129
  • 64 Sloan CE, Chadalavada SC, Cook TS. et al. Assessment of Follow-up Completeness and Notification Preferences for Imaging Findings of Possible Cancer. Acad. Radiol 2014; 21: 1579-1586
  • 65 Schmid-Bindert G, Vogel-Claussen J, Gütz S. et al. Incidental Pulmonary Nodules – What Do We Know in 2022. Respiration 2022; 101: 1024-1034
  • 66 Binczyk F, Prazuch W, Bozek P. et al. Radiomics and artificial intelligence in lung cancer screening. Transl. Lung Cancer Res 2021; 10: 1186-1199
  • 67 Gong J, Liu J, Hao W. et al. A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images. Eur. Radiol 2020; 30: 1847-1855
  • 68 Heuvelmans MA, van Ooijen PMA, Ather S. et al. Lung cancer prediction by Deep Learning to identify benign lung nodules. Lung Cancer 2021; 154: 1-4
  • 69 Ardila D, Kiraly AP, Bharadwaj S. et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med 2019; 25: 954-961
  • 70 Mikhael PG, Wohlwend J, Yala A. et al. Sybil: A Validated Deep Learning Model to Predict Future Lung Cancer Risk From a Single Low-Dose Chest Computed Tomography. J. Clin. Oncol 2023; 41: 2191-2200
  • 71 Lacson R, O’Connor SD, Andriole KP. et al. Automated Critical Test Result Notification System: Architecture, Design, and Assessment of Provider Satisfaction. Am. J. Roentgenol 2014; 203: W491-W496
  • 72 Desai S, Kapoor N, Hammer MM. et al. RADAR: A Closed-Loop Quality Improvement Initiative Leveraging A Safety Net Model for Incidental Pulmonary Nodule Management. Jt. Comm. J. Qual. Patient Saf 2021; 47: 275-281
  • 73 Dyer DS, Zelarney PT, Carr LL. et al. Improvement in Follow-up Imaging With a Patient Tracking System and Computerized Registry for Lung Nodule Management. J. Am. Coll. Radiol 2021; 18: 937-946
  • 74 Roberts TJ, Lennes IT, Hawari S. et al. Integrated, Multidisciplinary Management of Pulmonary Nodules Can Streamline Care and Improve Adherence to Recommendations. Oncologist 2020; 25: 431-437