Semin Liver Dis 2023; 43(04): 418-428
DOI: 10.1055/a-2187-3382
Review Article

Hedgehog Signaling: Implications in Liver Pathophysiology

Rajesh Kumar Dutta
1   Department of Medicine, Duke University, Durham, North Carolina
JiHye Jun
1   Department of Medicine, Duke University, Durham, North Carolina
Kuo Du
1   Department of Medicine, Duke University, Durham, North Carolina
Anna Mae Diehl
1   Department of Medicine, Duke University, Durham, North Carolina
› Author Affiliations


The purpose of this review is to summarize current knowledge about the role of the Hedgehog signaling pathway in liver homeostasis and disease. Hedgehog is a morphogenic signaling pathway that is active in development. In most healthy tissues, pathway activity is restricted to stem and/or stromal cell compartments, where it enables stem cell self-renewal and tissue homeostasis. Aberrant over-activation of Hedgehog signaling occurs in many cancers, including hepatocellular and cholangio-carcinoma. The pathway is also activated transiently in stromal cells of injured tissues and orchestrates normal wound healing responses, including inflammation, vascular remodeling, and fibrogenesis. In liver, sustained Hedgehog signaling in stromal cells plays a major role in the pathogenesis of cirrhosis. Hedgehog signaling was thought to be silenced in healthy hepatocytes. However, recent studies show that targeted disruption of the pathway in hepatocytes dysregulates lipid, cholesterol, and bile acid metabolism, and promotes hepatic lipotoxicity, insulin resistance, and senescence. Hepatocytes that lack Hedgehog activity also produce a secretome that activates Hedgehog signaling in cholangiocytes and neighboring stromal cells to induce inflammatory and fibrogenic wound healing responses that drive progressive fibrosis. In conclusion, Hedgehog signaling must be precisely controlled in adult liver cells to maintain liver health.

Publication History

Accepted Manuscript online:
06 October 2023

Article published online:
10 November 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

  • References

  • 1 Zhang Y, Beachy PA. Cellular and molecular mechanisms of Hedgehog signalling. Nat Rev Mol Cell Biol 2023; 24 (09) 668-687
  • 2 Kaushal JB, Batra SK, Rachagani S. Hedgehog signaling and its molecular perspective with cholesterol: a comprehensive review. Cell Mol Life Sci 2022; 79 (05) 266
  • 3 Hui CC, Angers S. Gli proteins in development and disease. Annu Rev Cell Dev Biol 2011; 27: 513-537
  • 4 Teperino R, Pospisilik JA. Determination and analysis of cellular metabolic changes by noncanonical Hedgehog signaling. Methods Mol Biol 2015; 1322: 187-198
  • 5 Inoki K, Kim J, Guan KL. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 2012; 52: 381-400
  • 6 Lin SC, Hardie DG. AMPK: sensing glucose as well as cellular energy status. Cell Metab 2018; 27 (02) 299-313
  • 7 Rallis A, Navarro JA, Rass M. et al. Hedgehog signaling modulates glial proteostasis and lifespan. Cell Rep 2020; 30 (08) 2627-2643.e5
  • 8 Weichhart T. mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology 2018; 64 (02) 127-134
  • 9 Maiese K. The metabolic basis for nervous system dysfunction in Alzheimer's disease, Parkinson's disease, and Huntington's disease. Curr Neurovasc Res 2023; 20 (03) 314-333
  • 10 Gao FJ, Klinedinst D, Fernandez FX. et al. Forebrain Shh overexpression improves cognitive function and locomotor hyperactivity in an aneuploid mouse model of Down syndrome and its euploid littermates. Acta Neuropathol Commun 2021; 9 (01) 137
  • 11 Machado MV, Diehl AM. Hedgehog signalling in liver pathophysiology. J Hepatol 2018; 68 (03) 550-562
  • 12 Zhu C, Tabas I, Schwabe RF, Pajvani UB. Maladaptive regeneration - the reawakening of developmental pathways in NASH and fibrosis. Nat Rev Gastroenterol Hepatol 2021; 18 (02) 131-142
  • 13 Jeng KS, Chang CF, Lin SS. Sonic Hedgehog signaling in organogenesis, tumors, and tumor microenvironments. Int J Mol Sci 2020; 21 (03) 758
  • 14 Jeng KS, Sheen IS, Leu CM, Tseng PH, Chang CF. The role of smoothened in cancer. Int J Mol Sci 2020; 21 (18) 6863
  • 15 Matz-Soja M, Aleithe S, Marbach E. et al. Hepatic Hedgehog signaling contributes to the regulation of IGF1 and IGFBP1 serum levels. Cell Commun Signal 2014; 12: 11
  • 16 Matz-Soja M, Rennert C, Schönefeld K. et al. Hedgehog signaling is a potent regulator of liver lipid metabolism and reveals a GLI-code associated with steatosis. eLife 2016; 5: e13308
  • 17 Dalton GD, Oh SH, Tang L. et al. Hepatocyte activity of the cholesterol sensor smoothened regulates cholesterol and bile acid homeostasis in mice. iScience 2021; 24 (09) 103089
  • 18 Rennert C, Eplinius F, Hofmann U. et al. Conditional loss of hepatocellular Hedgehog signaling in female mice leads to the persistence of hepatic steroidogenesis, androgenization and infertility. Arch Toxicol 2017; 91 (11) 3677-3687
  • 19 Marbach-Breitrück E, Matz-Soja M, Abraham U. et al. Tick-tock hedgehog-mutual crosstalk with liver circadian clock promotes liver steatosis. J Hepatol 2019; 70 (06) 1192-1202
  • 20 Ott F, Körner C, Werner K. et al. Hepatic Hedgehog signaling participates in the crosstalk between liver and adipose tissue in mice by regulating FGF21. Cells 2022; 11 (10) 1680
  • 21 Chen T, Dalton G, Oh SH. et al. Hepatocyte smoothened activity controls susceptibility to insulin resistance and nonalcoholic fatty liver disease. Cell Mol Gastroenterol Hepatol 2023; 15 (04) 949-970
  • 22 Maeso-Díaz R, Dalton GD, Oh S. et al. Aging reduces liver resiliency by dysregulating Hedgehog signaling. Aging Cell 2022; 21 (02) e13530
  • 23 Vokes SA, Yatskievych TA, Heimark RL. et al. Hedgehog signaling is essential for endothelial tube formation during vasculogenesis. Development 2004; 131 (17) 4371-4380
  • 24 Chapouly C, Guimbal S, Hollier PL, Renault MA. Role of Hedgehog signaling in vasculature development, differentiation, and maintenance. Int J Mol Sci 2019; 20 (12) 3076
  • 25 Xie G, Choi SS, Syn WK. et al. Hedgehog signalling regulates liver sinusoidal endothelial cell capillarisation. Gut 2013; 62 (02) 299-309
  • 26 Uschner FE, Ranabhat G, Choi SS. et al. Statins activate the canonical hedgehog-signaling and aggravate non-cirrhotic portal hypertension, but inhibit the non-canonical hedgehog signaling and cirrhotic portal hypertension. Sci Rep 2015; 5: 14573
  • 27 Xie G, Swiderska-Syn M, Jewell ML. et al. Loss of pericyte smoothened activity in mice with genetic deficiency of leptin. BMC Cell Biol 2017; 18 (01) 20
  • 28 Sicklick JK, Li YX, Choi SS. et al. Role for hedgehog signaling in hepatic stellate cell activation and viability. Lab Invest 2005; 85 (11) 1368-1380
  • 29 Bhave VS, Mars W, Donthamsetty S. et al. Regulation of liver growth by glypican 3, CD81, hedgehog, and Hhex. Am J Pathol 2013; 183 (01) 153-159
  • 30 Witek RP, Yang L, Liu R. et al. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells. Gastroenterology 2009; 136 (01) 320.e2-330.e2
  • 31 Palm W, Swierczynska MM, Kumari V, Ehrhart-Bornstein M, Bornstein SR, Eaton S. Secretion and signaling activities of lipoprotein-associated hedgehog and non-sterol-modified hedgehog in flies and mammals. PLoS Biol 2013; 11 (03) e1001505
  • 32 Rodenfels J, Lavrynenko O, Ayciriex S. et al. Production of systemically circulating Hedgehog by the intestine couples nutrition to growth and development. Genes Dev 2014; 28 (23) 2636-2651
  • 33 Chen Y, Choi SS, Michelotti GA. et al. Hedgehog controls hepatic stellate cell fate by regulating metabolism. Gastroenterology 2012; 143 (05) 1319-1329.e11
  • 34 Du K, Hyun J, Premont RT. et al. Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells. Gastroenterology 2018; 154 (05) 1465.e13-1479.e13
  • 35 Ferreira-Gonzalez S, Rodrigo-Torres D, Gadd VL, Forbes SJ. Cellular senescence in liver disease and regeneration. Semin Liver Dis 2021; 41 (01) 50-66
  • 36 Maeso-Díaz R, Du K, Pan C. et al. Targeting senescent hepatocytes using the thrombomodulin-PAR1 inhibitor vorapaxar ameliorates NAFLD progression. Hepatology 2023; 78 (04) 1209-1222
  • 37 Rangwala F, Guy CD, Lu J. et al. Increased production of sonic hedgehog by ballooned hepatocytes. J Pathol 2011; 224 (03) 401-410
  • 38 Kusano H, Kondo R, Ogasawara S. et al. Utility of sonic hedgehog and keratin 8/18 immunohistochemistry for detecting ballooned hepatocytes. Histopathology 2022; 80 (06) 974-981
  • 39 Guy CD, Suzuki A, Zdanowicz M. et al; NASH CRN. Hedgehog pathway activation parallels histologic severity of injury and fibrosis in human nonalcoholic fatty liver disease. Hepatology 2012; 55 (06) 1711-1721
  • 40 Estep M, Mehta R, Bratthauer G. et al. Hepatic sonic hedgehog protein expression measured by computer assisted morphometry significantly correlates with features of non-alcoholic steatohepatitis. BMC Gastroenterol 2019; 19 (01) 27
  • 41 Moore MP, Wang X, Shi H. et al. Circulating indian hedgehog is a marker of the hepatocyte-TAZ pathway in experimental NASH and is elevated in humans with NASH. JHEP Rep Innov Hepatol 2023; 5 (05) 100716
  • 42 Wang X, Zheng Z, Caviglia JM. et al. Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis. Cell Metab 2016; 24 (06) 848-862
  • 43 Wang X, Cai B, Yang X. et al. Cholesterol stabilizes TAZ in hepatocytes to promote experimental non-alcoholic steatohepatitis. Cell Metab 2020; 31 (05) 969-986.e7
  • 44 Omenetti A, Yang L, Li YX. et al. Hedgehog-mediated mesenchymal-epithelial interactions modulate hepatic response to bile duct ligation. Lab Invest 2007; 87 (05) 499-514
  • 45 Jung Y, McCall SJ, Li YX, Diehl AM. Bile ductules and stromal cells express hedgehog ligands and/or hedgehog target genes in primary biliary cirrhosis. Hepatology 2007; 45 (05) 1091-1096
  • 46 Carpino G, Cardinale V, Renzi A. et al. Activation of biliary tree stem cells within peribiliary glands in primary sclerosing cholangitis. J Hepatol 2015; 63 (05) 1220-1228
  • 47 Jalan-Sakrikar N, De Assuncao TM, Lu J. et al. Hedgehog signaling overcomes an EZH2-dependent epigenetic barrier to promote cholangiocyte expansion. PLoS One 2016; 11 (12) e0168266
  • 48 Gupta V, Gupta I, Park J, Bram Y, Schwartz RE. Hedgehog signaling demarcates a niche of fibrogenic peribiliary mesenchymal cells. Gastroenterology 2020; 159 (02) 624-638.e9
  • 49 Omenetti A, Bass LM, Anders RA. et al. Hedgehog activity, epithelial-mesenchymal transitions, and biliary dysmorphogenesis in biliary atresia. Hepatology 2011; 53 (04) 1246-1258
  • 50 Lianos GD, Glantzounis GK. Synchronous colorectal liver metastases: treatment dilemmas and hopes for improving oncological outcomes. Future Oncol 2016; 12 (15) 1743-1746
  • 51 Cardinale V, Wang Y, Carpino G. et al. The biliary tree–a reservoir of multipotent stem cells. Nat Rev Gastroenterol Hepatol 2012; 9 (04) 231-240
  • 52 Cardinale V, Carpino G, Overi D. et al. Human duodenal submucosal glands contain a defined stem/progenitor subpopulation with liver-specific regenerative potential. J Hepatol 2023; 78 (01) 165-179
  • 53 Mitra A, Yan J, Zhang L, Li S. A small molecule Hedgehog agonist HhAg1.5 mediated reprogramming breaks the quiescence of noninjured liver stem cells for rescuing liver failure. Transl Res 2019; 205: 44-50
  • 54 Navas MC, Glaser S, Dhruv H, Celinski S, Alpini G, Meng F. Hepatitis C virus infection and cholangiocarcinoma: an insight into epidemiologic evidences and hypothetical mechanisms of oncogenesis. Am J Pathol 2019; 189 (06) 1122-1132
  • 55 Li B, Wang Y, Pelz C. et al. In vitro expansion of cirrhosis derived liver epithelial cells with defined small molecules. Stem Cell Res (Amst) 2021; 56: 102523
  • 56 Wang WH, Studach LL, Andrisani OM. Proteins ZNF198 and SUZ12 are down-regulated in hepatitis B virus (HBV) X protein-mediated hepatocyte transformation and in HBV replication. Hepatology 2011; 53 (04) 1137-1147
  • 57 Glessner JT, Ningappa MB, Ngo KA. et al. Biliary atresia is associated with polygenic susceptibility in ciliogenesis and planar polarity effector genes. J Hepatol 2023; (e-pub ahead of print) DOI: 10.1016/j.jhep.2023.07.039.
  • 58 Kar SP, Seldin MF, Chen W. et al; Italian PBC Genetics Study Group. Pathway-based analysis of primary biliary cirrhosis genome-wide association studies. Genes Immun 2013; 14 (03) 179-186
  • 59 Carbone M, Lleo A, Sandford RN, Invernizzi P. Implications of genome-wide association studies in novel therapeutics in primary biliary cirrhosis. Eur J Immunol 2014; 44 (04) 945-954
  • 60 Nevi L, Costantini D, Safarikia S. et al. Cholest-4,6-dien-3-one promote epithelial-to-mesenchymal transition (EMT) in biliary tree stem/progenitor cell cultures in vitro. Cells 2019; 8 (11) 1443
  • 61 Jannone G, Bonaccorsi Riani E, de Magnée C. et al. Senescence and senotherapies in biliary atresia and biliary cirrhosis. Aging (Albany NY) 2023; 15 (11) 4576-4599
  • 62 Nault JC, Paradis V, Ronot M, Zucman-Rossi J. Benign liver tumours: understanding molecular physiology to adapt clinical management. Nat Rev Gastroenterol Hepatol 2022; 19 (11) 703-716
  • 63 Della Corte CM, Viscardi G, Papaccio F. et al. Implication of the Hedgehog pathway in hepatocellular carcinoma. World J Gastroenterol 2017; 23 (24) 4330-4340
  • 64 Cancer Genome Atlas Research Network. Electronic address:, Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 2017; 169 (07) 1327.e23-1341.e23
  • 65 Lima-Fernandes E, Murison A, da Silva Medina T. et al. Targeting bivalency de-represses Indian Hedgehog and inhibits self-renewal of colorectal cancer-initiating cells. Nat Commun 2019; 10 (01) 1436
  • 66 Ardalan Khales S, Forghanifard MM, Abbaszadegan MR, Hosseini SE. EZH2 deregulates BMP, Hedgehog, and Hippo cell signaling pathways in esophageal squamous cell carcinoma. Adv Med Sci 2023; 68 (01) 21-30
  • 67 Wang Y, Wang J, Li X. et al. N1-methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism. Nat Commun 2021; 12 (01) 6314
  • 68 Mok EHK, Leung CON, Zhou L. et al. Caspase-3-induced activation of SREBP2 drives drug resistance via promotion of cholesterol biosynthesis in hepatocellular carcinoma. Cancer Res 2022; 82 (17) 3102-3115
  • 69 Affo S, Yu LX, Schwabe RF. The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu Rev Pathol 2017; 12: 153-186
  • 70 Li X, Ramadori P, Pfister D, Seehawer M, Zender L, Heikenwalder M. The immunological and metabolic landscape in primary and metastatic liver cancer. Nat Rev Cancer 2021; 21 (09) 541-557
  • 71 Macias RIR, Monte MJ, Serrano MA. et al. Impact of aging on primary liver cancer: epidemiology, pathogenesis and therapeutics. Aging (Albany NY) 2021; 13 (19) 23416-23434
  • 72 Thadathil N, Selvarani R, Mohammed S. et al. Senolytic treatment reduces cell senescence and necroptosis in Sod1 knockout mice that is associated with reduced inflammation and hepatocellular carcinoma. Aging Cell 2022; 21 (08) e13676
  • 73 Makino Y, Hikita H, Fukumoto K. et al. Constitutive activation of the tumor suppressor p53 in hepatocytes paradoxically promotes non-cell autonomous liver carcinogenesis. Cancer Res 2022; 82 (16) 2860-2873
  • 74 Yoshimoto S, Loo TM, Atarashi K. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013; 499 (7456) 97-101
  • 75 Kang TW, Yevsa T, Woller N. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 2011; 479 (7374) 547-551
  • 76 Eggert T, Wolter K, Ji J. et al. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell 2016; 30 (04) 533-547
  • 77 Chen HA, Ho YJ, Mezzadra R. et al. Senescence rewires microenvironment sensing to facilitate antitumor immunity. Cancer Discov 2023; 13 (02) 432-453
  • 78 Li F, Huangyang P, Burrows M. et al. FBP1 loss disrupts liver metabolism and promotes tumorigenesis through a hepatic stellate cell senescence secretome. Nat Cell Biol 2020; 22 (06) 728-739