Subscribe to RSS
DOI: 10.1055/a-2213-2320
Prognostische Rolle der Skelettmuskulatur in der Onkologie: Bedeutung, Zusammenhänge und klinische Implikationen
Article in several languages: English | deutsch
Zusammenfassung
Hintergrund
Sarkopenie ist durch einen Verlust von Muskelkraft, Muskelmasse und –funktion charakterisiert. Sie ist ein sehr häufiges Syndrom bei onkologischen Patienten, quantitativ messbar und prognostisch bei vielen Tumorentitäten klinisch relevant.
Methode
Mit einer systematischen Analyse der publizierten Meta-Analysen gibt die vorliegende Arbeit eine Übersicht zum aktuellen Kenntnisstand und der prognostischen Rolle der Sarkopenie in der Onkologie.
Schlussfolgerung
Die Prävalenz der Sarkopenie beträgt bei onkologischen Patienten 39,6 % im kurativen Setting und 49,2 % im palliativen Setting. Sarkopenie ist stark assoziiert mit der dosislimitierenden Toxizität von Tumortherapien. Sarkopenie beeinflusst das Ansprechen auf antitumorale Therapien deutlich. Das Vorliegen der Sarkopenie korreliert mit dem Auftreten schwerer postoperativer Komplikationen in der Onkochirurgie. Sie ist ein limitierender Faktor für das Gesamtüberleben bei den meisten onkologischen Erkrankungen sowohl im kurativen als auch im palliativen Setting. Der Zustand der Skelettmuskulatur sollte daher in den radiologischen Staging-Berichten bei onkologischen Patienten erwähnt werden.
Kernaussagen
-
Die Prävalenz der Sarkopenie bei onkologischen Patienten beträgt 39,6 % im kurativen Setting und 49,2 % im palliativen Setting.
-
Sarkopenie ist stark assoziiert mit der dosislimitierenden Toxizität und dem Therapieansprechen.
-
Sarkopenie beeinflusst das Gesamtüberleben im kurativen wie auch palliativen Setting.
Zitierweise
-
Surov A, Wienke A, Gutzmer R et al. Prognostic role of the skeletal musculature in oncology: significance, coherences and clinical implications. Fortschr Röntgenstr 2024; 196: 699 – 706
Publication History
Received: 10 July 2023
Accepted: 02 November 2023
Article published online:
22 December 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Cruz-Jentoft AJ, Bahat G, Bauer J. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019; 48: 16-31
- 2 Ali S, Garcia JM. Sarcopenia, Cachexia and Aging: Diagnosis, Mechanisms and Therapeutic Options – A Mini-Review. Gerontology 2014; 60: 294-230
- 3 Rier HN, Jager A, Sleijfer S. et al. The Prevalence and Prognostic Value of Low Muscle Mass in Cancer Patients: A Review of the Literature. Oncologist 2016; 21 (11) 1396-1409
- 4 Buettner S, Wagner D, Kim Y. et al. Inclusion of Sarcopenia Outperforms the Modified Frailty Index in Predicting 1-Year Mortality among 1326 Patients Undergoing Gastrointestinal Surgery for a Malignant Indication. J Am Coll Surg 2016; 222: 397-407
- 5 Simonsen C, de Heer P, Bjerre ED. et al. Sarcopenia and Postoperative Complication Risk in Gastrointestinal Surgical Oncology: A Meta-analysis. Ann Surg 2018; 268 (01) 58-69
- 6 Surov A, Pech M, Gessner D. et al. Low skeletal muscle mass is a predictor of treatment related toxicity in oncologic patients. A meta-analysis. Clin Nutr 2021; 40 (10) 5298-5310
- 7 Prado CM, Lieffers JR, McCargar LJ. et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol 2008; 9 (07) 629-635
- 8 Shachar SS, Williams GR, Muss HB. et al. Prognostic value of sarcopenia in adults with solid tumours: A meta-analysis and systematic review. Eur J Cancer 2016; 57: 58-67
- 9 Martin L, Birdsell L, Macdonald N. et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol 2013; 31 (12) 1539-1547
- 10 Baracos VE, Reiman T, Mourtzakis M. et al. Body composition in patients with non-small cell lung cancer: A contemporary view of cancer cachexia with the use of computed tomography image analysis. Am J Clin Nutr 2010; 91: 1133S-1137S
- 11 van Vledder MG, Levolger S, Ayez N. et al. Body composition and outcome in patients undergoing resection of colorectal liver metastases. Br J Surg 2012; 99: 550-557
- 12 Camus V, Lanic H, Kraut J. et al. Prognostic impact of fat tissue loss and cachexia assessed by computed tomography scan in elderly patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Eur J Haematol 2014; 93: 9-18
- 13 Surov A, Wienke A. Prevalence of sarcopenia in patients with solid tumors: A meta-analysis based on 81,814 patients. JPEN J Parenter Enteral Nutr 2022; 46 (08) 1761-1768
- 14 Surov A, Strobel A, Borggrefe J. et al. Low skeletal muscle mass predicts treatment response in oncology: a meta-analysis. Eur Radiol 2023; 33 (09) 6426-6437
- 15 Surov A, Wienke A, Gutzmer R. et al. Time to include sarcopenia into the oncological routine. Eur J Cancer 2023; 190: 112939
- 16 Williams GR, Dunne RF, Giri S. et al. Sarcopenia in the Older Adult With Cancer. J Clin Oncol 2021; 39 (19) 2068-2078
- 17 Hilmi M, Jouinot A, Burns R. et al. Body composition and sarcopenia: The next-generation of personalized oncology and pharmacology?. Pharmacol Ther 2019; 196: 135-159
- 18 van der Meij BS, Teleni L, McCarthy AL. et al. Cancer cachexia: an overview of diagnostic criteria and therapeutic approaches for the accredited practicing dietitian. J Hum Nutr Diet 2021; 34 (01) 243-254
- 19 Cohen S, Nathan JA, Goldberg AL. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov 2015; 14 (01) 58-74
- 20 Armstrong VS, Fitzgerald LW, Bathe OF. Armstrong Cancer-Associated Muscle Wasting-Candidate Mechanisms and Molecular Pathways. Int J Mol Sci 2020; 21 (23) 9268
- 21 Sakai H, Asami M, Naito H. et al. Exogenous insulin-like growth factor 1 attenuates cisplatin-induced muscle atrophy in mice. J Cachexia Sarcopenia Muscle 2021; 16
- 22 Prado CM, Maia YL, Ormsbee M. et al. Assessment of nutritional status in cancer-the relationship between body composition and pharmacokinetics. Anticancer Agents Med Chem 2013; 13 (08) 1197-1203
- 23 Hopkins JJ, Sawyer MB. A review of body composition and pharmacokinetics in oncology. Expert Rev Clin Pharmacol 2017; 10 (09) 947-956
- 24 Hopkins JJ, Sawyer MB. Interactions of lean soft-tissue and chemotherapy toxicities in patients receiving anti-cancer treatments. Cancer Chemother Pharmacol 2018; 82 (01) 1-29
- 25 Prado CMM, Baracos VE, McCargar LJ. et al. Body composition as an independent determinant of 5-fluorouracil-based chemotherapy toxicity. Clinical Cancer Research 2007; 13 (11) 3264-3268
- 26 Mourtzakis M, Prado CM, Lieffers JR. et al. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab 2008; 33: 997-1006
- 27 Sjøblom B, Grønberg BH, Benth JŠ. et al. Low muscle mass is associated with chemotherapy-induced haematological toxicity in advanced non-small cell lung cancer. Lung Cancer 2015; 90 (01) 85-91
- 28 Prado CM, Baracos VE, McCargar LJ. et al. Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in metastatic breast cancer patients receiving capecitabine treatment. Clin Cancer Res 2009; 15 (08) 2920-2926
- 29 Mir O, Coriat R, Blanchet B. et al. Sarcopenia predicts early dose-limiting toxicities and pharmacokinetics of sorafenib in patients with hepatocellular carcinoma. PLoS One 2012; 7 (05) e37563
- 30 Massicotte MH, Borget I, Broutin S. et al. Body composition variation and impact of low skeletal muscle mass in patients with advanced medullary thyroid carcinoma treated with vandetanib: results from a placebo-controlled study. J Clin Endocrinol Metab 2013; 98 (06) 2401-2408
- 31 Williams GR, Deal AM, Shachar SS. et al. The impact of skeletal muscle on the pharmacokinetics and toxicity of 5-fluorouracil in colorectal cancer. Cancer Chemother Pharmacol 2018; 81 (02) 413-417
- 32 Cespedes Feliciano EM, Chen WY, Lee V. et al. Body Composition, Adherence to Anthracycline and Taxane-Based Chemotherapy, and Survival After Nonmetastatic Breast Cancer. JAMA Oncol 2020; 6 (02) 264-270
- 33 Cvan Trobec K, Kerec Kos M, Trontelj J. et al. Influence of cancer cachexia on drug liver metabolism and renal elimination in rats. J Cachexia Sarcopenia Muscle 2015; 6 (01) 45-52
- 34 Kitano Y, Yamashita YI, Saito Y. et al. Sarcopenia Affects Systemic and Local Immune System and Impacts Postoperative Outcome in Patients with Extrahepatic Cholangiocarcinoma. World J Surg 2019; 43 (09) 2271-2280
- 35 Afzali AM, Müntefering T, Wiendl H. et al. Skeletal muscle cells actively shape (auto)immune responses. Autoimmun Rev 2018; 17 (05) 518-529
- 36 Nelke C, Dziewas R, Minnerup J. et al. Skeletal muscle as potential central link between sarcopenia and immune senescence. EBioMedicine 2019; 49: 381-388
- 37 Conlon KC, Lugli E, Welles HC. et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J Clin Oncol 2015; 33: 74-82
- 38 Dubois SP, Miljkovic MD, Fleisher TA. et al. Short-course IL-15 given as a continuous infusion led to a massive expansion of effective NK cells: implications for combination therapy with antitumor antibodies. J Immunother Cancer 2021; 9 (04) e002193
- 39 Yu P, Steel JC, Zhang M. et al. Simultaneous blockade of multiple immune system inhibitory checkpoints enhances antitumor activity mediated by interleukin-15 in a murine metastatic colon carcinoma model. Clin Cancer Res 2010; 16: 6019-6028
- 40 Yamamoto K, Nagatsuma Y, Fukuda Y. et al. Effectiveness of a preoperative exercise and nutritional support program for elderly sarcopenic patients with gastric cancer. Gastric Cancer 2017; 20: 913-918
- 41 Nowak S, Kloth C, Theis M. et al. Deep learning-based assessment of CT markers of sarcopenia and myosteatosis for outcome assessment in patients with advanced pancreatic cancer after high-intensity focused ultrasound treatment. Eur Radiol 2023;
- 42 Aleixo GFP, Shachar SS, Nyrop KA. et al. Myosteatosis and prognosis in cancer: Systematic review and meta-analysis. Crit Rev Oncol Hematol 2020; 145: 102839
- 43 Fang T, Gong Y, Wang Y. Prognostic values of myosteatosis for overall survival in patients with gastric cancers: A meta-analysis with trial sequential analysis. Nutrition 2023; 105: 111866
- 44 Feng S, Mu H, Hou R. et al. Prognostic value of myosteatosis in patients with lung cancer: a systematic review and meta-analysis. Int J Clin Oncol 2022; 27 (07) 1127-1138
- 45 Lee CM, Kang J. Prognostic impact of myosteatosis in patients with colorectal cancer: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2020; 11 (05) 1270-1282
- 46 Iwashita K, Kubota H, Nishioka R. et al. Prognostic Value of Radiomics Analysis of Skeletal Muscle After Radical Irradiation of Esophageal Cancer. Anticancer Res 2023; 43 (04) 1749-1760
- 47 Saalfeld S, Kreher R, Hille G. et al. Prognostic role of radiomics-based body composition analysis for the 1-year survival for hepatocellular carcinoma patients. J Cachexia Sarcopenia Muscle 2023;