CC BY 4.0 · SynOpen 2024; 08(01): 39-46
DOI: 10.1055/a-2236-0803
letter

Synthesis of a Propellane-Type 5/5/6-Tricyclic System by Tandem-Metathesis: A New Approach to a Quadranoid Skeleton

Sambasivarao Kotha
,
Ramakrishna Reddy Keesari


Abstract

We disclose a useful synthetic method for preparing the propellane-type 5/5/6-tricyclic system that is present in diquinane-based natural products such as quadrone, terrecyclic acid A, or terrecyclol. The method involves an LDA-mediated regio- and stereoselective allylation and a tandem metathesis as key steps. The target molecules were assembled in just two steps starting from a readily available building block, a 3β-vinyl tricyclic ketone prepared from endo-dicyclopentadiene-1-one. All the compounds prepared were characterized by NMR analyses and/or chemical methods. The synthetic methods demonstrated here are useful in syntheses of quadranoid-type natural products.

Supporting Information



Publication History

Received: 22 October 2023

Accepted after revision: 04 December 2023

Accepted Manuscript online:
28 December 2023

Article published online:
17 January 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 2a Dilmaç AM, Spuling E, de Meijere A, Bräse S. Angew. Chem. Int. Ed. 2017; 56: 5684
    • 2b Pihko AJ, Koskinen AM. P. Tetrahedron 2005; 61: 8769
    • 2c Kotha S, Cheekatla SR, Mandal B. Eur. J. Org. Chem. 2017; 4277
    • 2d Schmiedel VM, Hong YJ, Lentz D, Tantillo DJ, Christmann M. Angew. Chem. Int. Ed. 2018; 57: 2419
    • 2e Dvorak CA, Rawal VH. Chem. Commun. 1997; 2381
    • 2f Schneider LM, Schmiedel VM, Pecchioli T, Lentz D, Merten C, Christmann M. Org. Lett. 2017; 19: 2310
    • 3a Jiang S.-Z, Lei T, Wei K, Yang Y.-R. Org. Lett. 2014; 16: 5612
    • 3b Hou S.-H, Tu Y.-Q, Wang S.-H, Xi C.-C, Zhang F.-M, Wang S.-H, Li Y.-T, Liu L. Angew. Chem. Int. Ed. 2016; 55: 4456
    • 4a Roncal T, Cordobés S, Ugalde U, He Y, Sterner O. Tetrahedron Lett. 2002; 43: 6799
    • 4b Gao S.-S, Li X.-M, Zhang Y, Li C.-S, Wang B.-G. Chem. Biodivers. 2011; 8: 1748
    • 5a Kotha S, Keesari RR. Eur. J. Org. Chem. 2022; 2022: e202201094
    • 5b Kotha S, Reddy Keesari R, Ravikumar O. Eur. J. Org. Chem. 2023; 26: e202201448
    • 6a Collado IG, Sánchez AJ. M, Hanson JR. Nat. Prod. Rep. 2007; 24: 674
    • 6b Hong AY, Stoltz BM. Angew. Chem. Int. Ed. 2014; 53: 5248
    • 6c Corrêa Pinto S, Guimarães Leitão G, Ribiero de Oliveira D, Ribiero Bizzo H, Fernandes Ramos D, Silviera Coelho T, Silva PE. A, Lourenco MC. S, Guimarães LeitãoS. Nat. Prod. Commun. 2009; 4: 1675
    • 6d Melching S, König WA. Phytochemistry 1999; 51: 517
  • 8 Kotha S, Keesari RR, Fatma A, Gunta R. J. Org. Chem. 2020; 85: 851
    • 9a Ranieri RL, Calton GJ. Tetrahedron Lett. 1978; 19: 499
    • 9b Kon K, Ito K, Isoe S. Tetrahedron Lett. 1984; 25: 3739
    • 9c Smith AB. III, Wexler BA, Slade J. Tetrahedron Lett. 1982; 23: 1631
    • 9d Lee H.-Y, Kim BG. Org. Lett. 2000; 2: 1951
    • 9e Ren Y, Presset M, Godemert J, Vanthuyne N, Naubron JV, Giorgi M, Rodriguez J, Coquerel Y. Chem. Commun. 2016; 52: 6565
    • 9f Lee S.-J, Lee H.-Y. Bull. Korean Chem. Soc. 2010; 31: 557
    • 10a Calton GJ, Ranieri RL, Espenshade MA. J. Antibiot. 1978; 31: 38
    • 10b Nakagawa M, Hirota A, Sakai H, Isogai A. J. Antibiot. 1982; 35: 778
    • 10c Nakagawa M, Sakai H, Isogai A, Hirota A. Agric. Biol. Chem. 1984; 48: 117
    • 10d Wijeratne EM. K, Turbyville TJ, Zhang Z, Bigelow D, Pierson LS. III, VanEtten HD, Whitesell L, Canfield LM, Gunatilaka AA. L. J. Nat. Prod. 2003; 66: 1567
    • 10e Kousara M, Ferry A, Le Bideau F, Serré KL, Chataigner I, Morvan E, Dubois J, Chéron M, Dumas F. Chem. Commun. 2015; 51: 3458
    • 11a Kakiuchi K, Itoga K, Tsugaru T, Hato Y, Tobe Y, Odaira Y. J. Org. Chem. 1984; 49: 659
    • 11b Kakiuchi K, Tsugaru T, Takeda M, Wakaki I, Tobe Y, Odaira Y. J. Org. Chem. 1985; 50: 488
    • 11c Kakiuchi K, Ue M, Wakaki I, Tobe Y, Odaira Y, Yasuda M, Shima K. J. Org. Chem. 1986; 51: 281
    • 11d Smith AB. III, Wexler BA, Tu CY, Konopelski JP. J. Am. Chem. Soc. 1985; 107: 1308
    • 11e Hua DH, Gung WY, Ostrander RA, Takusagawa F. J. Org. Chem. 1987; 52: 2509
    • 11f Hirota H, Kakita S, Hirota A, Nakagawa M. J. Chem. Soc., Chem. Commun. 1991; 1598
    • 12a Imanishi T, Yamashita M, Matsui M, Tanaka T, Iwata C. Chem. Pharm. Bull. 1988; 36: 2012
    • 12b Iwata C, Yamashita M, Aoki S.-I, Suzuki K, Takahashi I, Arakawa H, Imanishi T, Tanaka T. Chem. Pharm. Bull. 1985; 33: 436
    • 12c Kende AS, Roth B, Sanfilippo PJ, Blacklock TJ. J. Am. Chem. Soc. 1982; 104: 5808
    • 12d Imanishi T, Matsui M, Yamashita M, lwata C. Tetrahedron Lett. 1986; 27: 3161
    • 12e Kakiuchi K, Nakao T, Takeda M, Tobe Y, Odaira Y. Tetrahedron Lett. 1984; 25: 557
    • 12f Imanishi T, Matsui M, Yamashita M, Iwata C. J. Chem. Soc., Chem. Commun. 1987; 1802
    • 13a Neary AP, Parsons PJ. J. Chem. Soc., Chem. Commun. 1989; 1090
    • 13b Magnus P, Principe LM, Slater MJ. J. Org. Chem. 1987; 52: 1483
    • 13c Sowell CG, Wolin RL, Little RD. Tetrahedron Lett. 1990; 31: 485
  • 14 Funk RL, Abelman MM. J. Org. Chem. 1986; 51: 3247
    • 15a Kakiuchi K, Ue M, Tadaki T, Tobe Y, Odaira Y. Chem. Lett. 1986; 15: 507
    • 15b Smith AB. III, Konopelski JP, Wexler BA, Sprengeler PA. J. Am. Chem. Soc. 1991; 113: 3533
    • 15c Smith AB. III, Konopelski JP. J. Org. Chem. 1984; 49: 4094
    • 15d Klobus M, Zhu L, Coates RM. J. Org. Chem. 1992; 57: 4327
    • 16a Coates RM, Ho JZ, Klobus M, Zhu L. J. Org. Chem. 1998; 63: 9166
    • 16b Mehta G, Pramod K, Subrahmanyam D. J. Chem. Soc., Chem. Commun. 1986; 247
  • 17 Lee H.-Y, Lee S, Kim BG, Bahn JS. Tetrahedron Lett. 2004; 45: 7225
    • 18a Grubbs RH. Handbook of Metathesis, Vol. I: Catalyst Development and Mechanism. Wiley-VCH; Weinheim: 2004
    • 18b Kotha S, Ravikumar O. Eur. J. Org. Chem. 2014; 2014: 5582
    • 18c Kotha S, Aswar VR. Org. Lett. 2016; 18: 1808
    • 18d Kotha S, Gunta R. J. Org. Chem. 2017; 82: 8527
    • 18e Kotha S, Keesari RR. J. Org. Chem. 2021; 86: 17129
    • 18f Kotha S, Keesari RR. Chem. Asian J. 2022; 17: e202200848
    • 18g Kotha S, Meshram M, Aswar VR. Tetrahedron Lett. 2019; 60: 151337
    • 18h Kotha S, Sreenivasachary N. Bioorg. Med. Chem. Lett. 1998; 8: 257
    • 18i Kotha S, Aswar VR, Ansari S. Adv. Synth. Catal. 2019; 361: 1376
    • 18j Kotha S, Keesari RR, Ansari S. Synthesis 2019; 51: 3989
    • 18k Kotha S, Keesari RR. Asian J. Org. Chem. 2021; 10: 3456
    • 19a See ref. 7d.
    • 19b Antonova AS, Vinokurova MA, Kumandin PA, Merkulova NL, Sinelshchikova AA, Grigoriev MS, Novikov RA, Kouznetsov VV, Polyanskii KB, Zubkov FI. Molecules 2020; 25: 5379
    • 19c See ref. 8.
    • 19d Kotha S, Pulletikurti S, Fatma A, Dhangar G, Naidu GS. Synthesis 2021; 53: 1931
    • 19e See ref. 18k.
    • 19f Kotha S, Keesari RR. Eur. J. Org. Chem. 2022; e202201094
  • 20 Sugahara T, Fukuda H, Iwabuchi Y. J. Org. Chem. 2004; 69: 1744
  • 21 (1S,2R,4S,5S,6S)-2,4-Divinyltricyclo[4.3.2.01,5]undec-7-en-10-one (14) A stirred solution of compound 15 (50 mg, 0.233 mmol) in CH2Cl2 (50 mL) was purged sequentially with N2 gas and ethylene gas for 10 min each. G-II catalyst (20 mg, 0.023 mmol; 10 mol%) was added in one portion at rt under an ethylene atmosphere, and purging was continued for another 5–10 min. The mixture was then stirred at rt under ethylene for 8 h. When the reaction was complete (TLC), the volatiles were removed under reduced pressure, and the crude product was purified by column chromatography (silica gel, 1.0–1.5% EtOAc–PE) to give a colorless liquid; yield: 44 mg (88%); Rf = 0.61 (silica gel-coated 4.0 × 2.0 cm glass TLC plate, 2.0% EtOAc–PE; double run). IR (neat): 3074, 3026, 2923, 2877, 1737, 1636, 1454, 1429, 1412, 1325, 1156, 1098, 1070, 995, 955, 911, 775, 752, 721, 700, 676, 521 cm–1. 1H NMR (400 MHz, CDCl3): δ = 6.25 (tdd, J = 17.83, 11.78, 8.52 Hz, 1 H), 6.12–6.08 (m, 1 H), 5.99 (ddd, J = 16.81, 10.58, 6.00 Hz, 1 H), 5.52 (ddd, J = 9.31, 3.77, 2.58 Hz, 1 H), 5.09–5.04 (m, 4 H), 3.04–2.95 (m, 1 H), 2.77 (t, J = 5.94 Hz, 1 H), 2.62 (d, J = 11.99 Hz, 1 H), 2.52–2.45 (m, 1 H), 2.39–2.31 (m, 2 H), 2.18 (dq, J = 17.70, 2.48 Hz, 2 H), 2.04 (ddd, J = 13.16, 7.61, 5.92 Hz, 1 H), 1.45 (dd, J = 23.92, 12.70 Hz, 1 H). 13C{1H} NMR (100 MHz, CDCl3): δ = 223.2 (CO), 139.1 (CH), 137.4 (CH), 136.4 (CH), 126.1 (CH), 115.5 (CH2), 115.4 (CH2), 61.2 (C), 54.1 (CH), 51.8 (CH), 49.3 (CH2), 41.1 (CH), 38.4 (CH2), 38.3 (CH2), 34.3 (CH). HRMS (ESI, Q-ToF): m/z [M + K]+ calcd for C15H18KO: 253.0989; found 253.0989.