CC BY-NC-ND 4.0 · Thromb Haemost
DOI: 10.1055/a-2250-3166
Review Article

Glycosaminoglycans: Participants in Microvascular Coagulation of Sepsis

Nanxi Li
1   Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
,
Ruolin Hao
1   Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
,
Peng Ren
2   Beijing Institute of Basic Medical Sciences, Beijing, People Republic of China
,
Jingya Wang
2   Beijing Institute of Basic Medical Sciences, Beijing, People Republic of China
,
Jiahui Dong
1   Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
,
Tong Ye
1   Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
,
Danyang Zhao
1   Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
,
Xuan Qiao
1   Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
,
Zhiyun Meng
1   Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
,
Hui Gan
1   Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
,
Shuchen Liu
1   Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
,
Yunbo Sun
1   Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
,
Guifang Dou
1   Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
,
Ruolan Gu
1   Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
› Author Affiliations


Abstract

Sepsis represents a syndromic response to infection and frequently acts as a common pathway leading to fatality in the context of various infectious diseases globally. The pathology of severe sepsis is marked by an excess of inflammation and activated coagulation. A substantial contributor to mortality in sepsis patients is widespread microvascular thrombosis-induced organ dysfunction. Multiple lines of evidence support the notion that sepsis induces endothelial damage, leading to the release of glycosaminoglycans, potentially causing microvascular dysfunction. This review aims to initially elucidate the relationship among endothelial damage, excessive inflammation, and thrombosis in sepsis. Following this, we present a summary of the involvement of glycosaminoglycans in coagulation, elucidating interactions among glycosaminoglycans, platelets, and inflammatory cells. In this section, we also introduce a reasoned generalization of potential signal pathways wherein glycosaminoglycans play a role in clotting. Finally, we discuss current methods for detecting microvascular conditions in sepsis patients from the perspective of glycosaminoglycans. In conclusion, it is imperative to pay closer attention to the role of glycosaminoglycans in the mechanism of microvascular thrombosis in sepsis. Dynamically assessing glycosaminoglycan levels in patients may aid in predicting microvascular conditions, enabling the monitoring of disease progression, adjustment of clinical treatment schemes, and mitigation of both acute and long-term adverse outcomes associated with sepsis.

Data Availability Statement

Not applicable. All the data supporting in this article can be found in publicly available datasets.


Authors' Contribution

All authors drafted the article and revised it critically for important intellectual content and approved the final manuscript to be published.


Competing Interests

None declared.




Publication History

Received: 14 June 2023

Accepted: 23 December 2023

Accepted Manuscript online:
19 January 2024

Article published online:
15 February 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Singer M, Deutschman CS, Seymour CW. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315 (08) 801-810
  • 2 Global Report on the Epidemiology and Burden of Sepsis: Current Evidence, Identifying Gaps and Future Directions. Geneva: World Health Organization; 2020
  • 3 Rudd KE, Johnson SC, Agesa KM. et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet 2020; 395 (10219): 200-211
  • 4 Cecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet 2018; 392 (10141): 75-87
  • 5 Tao Chen DW, Chen H, Yan W. et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020; 368: m1295
  • 6 Chao JY, Derespina KR, Herold BC. et al. Clinical characteristics and outcomes of hospitalized and critically ill children and adolescents with coronavirus disease 2019 at a tertiary care medical center in New York City. J Pediatr 2020; 223: 14-19.e2
  • 7 Eastin C, Eastin T. Clinical characteristics of coronavirus disease 2019 in China. J Emerg Med 2020; 58 (04) 711-712
  • 8 López-Collazo E, Avendaño-Ortiz J, Martín-Quirós A, Aguirre LA. Immune response and COVID-19: a mirror image of sepsis. Int J Biol Sci 2020; 16 (14) 2479-2489
  • 9 Zhou F, Yu T, Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395 (10229): 1054-1062
  • 10 Möckl L. The emerging role of the mammalian glycocalyx in functional membrane organization and immune system regulation. Front Cell Dev Biol 2020; 8: 253
  • 11 Zhang X, Sun D, Song JW. et al. Endothelial cell dysfunction and glycocalyx - a vicious circle. Matrix Biol 2018; 71–72: 421-431
  • 12 Uchimido R, Schmidt EP, Shapiro NI. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care 2019; 23 (01) 16
  • 13 Sutherland TE, Dyer DP, Allen JE. The extracellular matrix and the immune system: a mutually dependent relationship. Science 2023; 379 (6633) eabp8964
  • 14 Schmidt EP, Overdier KH, Sun X. et al. Urinary glycosaminoglycans predict outcomes in septic shock and acute respiratory distress syndrome. Am J Respir Crit Care Med 2016; 194 (04) 439-449
  • 15 Shalaby S, Simioni P, Campello E. et al. Endothelial damage of the portal vein is associated with heparin-like effect in advanced stages of cirrhosis. Thromb Haemost 2020; 120 (08) 1173-1181
  • 16 Cox D. Bacteria-platelet interactions. J Thromb Haemost 2009; 7 (11) 1865-1866
  • 17 Palankar R, Kohler TP, Krauel K, Wesche J, Hammerschmidt S, Greinacher A. Platelets kill bacteria by bridging innate and adaptive immunity via platelet factor 4 and FcγRIIA. J Thromb Haemost 2018; 16 (06) 1187-1197
  • 18 Yang X, Cheng X, Tang Y. et al. Bacterial endotoxin activates the coagulation cascade through gasdermin D-dependent phosphatidylserine exposure. Immunity 2019; 51 (06) 983-996.e6
  • 19 Ramlall V, Thangaraj PM, Meydan C. et al. Immune complement and coagulation dysfunction in adverse outcomes of SARS-CoV-2 infection. Nat Med 2020; 26 (10) 1609-1615
  • 20 Doster RS, Rogers LM, Gaddy JA, Aronoff DM. Macrophage extracellular traps: a scoping review. J Innate Immun 2018; 10 (01) 3-13
  • 21 Kim HJ, Sim MS, Lee DH. et al. Lysophosphatidylserine induces eosinophil extracellular trap formation and degranulation: implications in severe asthma. Allergy 2020; 75 (12) 3159-3170
  • 22 Schmidt EP, Yang Y, Janssen WJ. et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med 2012; 18 (08) 1217-1223
  • 23 Aldabbous L, Abdul-Salam V, McKinnon T. et al. Neutrophil extracellular traps promote angiogenesis: evidence from vascular pathology in pulmonary hypertension. Arterioscler Thromb Vasc Biol 2016; 36 (10) 2078-2087
  • 24 McCarthy CG, Saha P, Golonka RM, Wenceslau CF, Joe B, Vijay-Kumar M. Innate immune cells and hypertension: neutrophils and neutrophil extracellular traps (NETs). Compr Physiol 2021; 11 (01) 1575-1589
  • 25 Wang H, Zhang H, Wang Y. et al. Regulatory T-cell and neutrophil extracellular trap interaction contributes to carcinogenesis in non-alcoholic steatohepatitis. J Hepatol 2021; 75 (06) 1271-1283
  • 26 Foley JH. Examining coagulation-complement crosstalk: complement activation and thrombosis. Thromb Res 2016; 141 (Suppl. 02) S50-S54
  • 27 De Backer D, Ortiz JA, Salgado D. Coupling microcirculation to systemic hemodynamics. Curr Opin Crit Care 2010; 16 (03) 250-254
  • 28 Fernández-Sarmiento J, Salazar-Peláez LM, Carcillo JA. The endothelial glycocalyx: a fundamental determinant of vascular permeability in sepsis. Pediatr Crit Care Med 2020; 21 (05) e291-e300
  • 29 de Bont CM, Boelens WC, Pruijn GJM. NETosis, complement, and coagulation: a triangular relationship. Cell Mol Immunol 2019; 16 (01) 19-27
  • 30 Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther 2021; 6 (01) 291
  • 31 Kaur BP, Secord E. Innate immunity. Pediatr Clin North Am 2019; 66 (05) 905-911
  • 32 Taguchi T, Mukai K. Innate immunity signalling and membrane trafficking. Curr Opin Cell Biol 2019; 59: 1-7
  • 33 De Nardo D. Toll-like receptors: activation, signalling and transcriptional modulation. Cytokine 2015; 74 (02) 181-189
  • 34 Hottz ED, Lopes JF, Freitas C. et al. Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation. Blood 2013; 122 (20) 3405-3414
  • 35 Schulte W, Bernhagen J, Bucala R. Cytokines in sepsis: potent immunoregulators and potential therapeutic targets–an updated view. Mediators Inflamm 2013; 2013: 165974
  • 36 Semple JW, Italiano Jr JE, Freedman J. Platelets and the immune continuum. Nat Rev Immunol 2011; 11 (04) 264-274
  • 37 Meziani F, Delabranche X, Asfar P, Toti F. Bench-to-bedside review: circulating microparticles–a new player in sepsis?. Crit Care 2010; 14 (05) 236
  • 38 Nicolai L, Schiefelbein K, Lipsky S. et al. Vascular surveillance by haptotactic blood platelets in inflammation and infection. Nat Commun 2020; 11 (01) 5778
  • 39 Gaertner F, Ahmad Z, Rosenberger G. et al. Migrating platelets are mechano-scavengers that collect and bundle bacteria. Cell 2017; 171 (06) 1368-1382.e23
  • 40 Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013; 13 (01) 34-45
  • 41 Lopes-Pires ME, Frade-Guanaes JO, Quinlan GJ. Clotting dysfunction in sepsis: a role for ROS and potential for therapeutic intervention. Antioxidants 2021; 11 (01) 88
  • 42 Martín C, Ordiales H, Vázquez F. et al. Bacteria associated with acne use glycosaminoglycans as cell adhesion receptors and promote changes in the expression of the genes involved in their biosynthesis. BMC Microbiol 2022; 22 (01) 65
  • 43 Clausen TM, Sandoval DR, Spliid CB. et al. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell 2020; 183 (04) 1043-1057.e15
  • 44 Stark K, Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol 2021; 18 (09) 666-682
  • 45 Padberg J-S, Wiesinger A, di Marco GS. et al. Damage of the endothelial glycocalyx in chronic kidney disease. Atherosclerosis 2014; 234 (02) 335-343
  • 46 Rabelink TJ, de Zeeuw D. The glycocalyx–linking albuminuria with renal and cardiovascular disease. Nat Rev Nephrol 2015; 11 (11) 667-676
  • 47 Rizzo ANSE, Schmidt EP. The role of the alveolar epithelial glycocalyx in acute respiratory distress syndrome. Am J Physiol Cell Physiol 2023; 324 (04) C799-C806
  • 48 Rovas A, Seidel LM, Vink H. et al. Association of sublingual microcirculation parameters and endothelial glycocalyx dimensions in resuscitated sepsis. Crit Care 2019; 23 (01) 260
  • 49 Bergmann S, Hammerschmidt S. Fibrinolysis and host response in bacterial infections. Thromb Haemost 2007; 98 (03) 512-520
  • 50 Wang Y, Zhao N, Jian Y. et al. The pro-inflammatory effect of Staphylokinase contributes to community-associated Staphylococcus aureus pneumonia. Commun Biol 2022; 5 (01) 618
  • 51 Friedrich R, Panizzi P, Fuentes-Prior P. et al. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature 2003; 425 (6957) 535-539
  • 52 Zhang X, Lin L, Huang H, Linhardt RJ. Chemoenzymatic synthesis of glycosaminoglycans. Acc Chem Res 2020; 53 (02) 335-346
  • 53 Shriver Z, Liu D, Sasisekharan R. Emerging views of heparan sulfate glycosaminoglycan structure/activity relationships modulating dynamic biological functions. Trends Cardiovasc Med 2002; 12 (02) 71-77
  • 54 Soares da Costa D, Reis RL, Pashkuleva I. Sulfation of glycosaminoglycans and its implications in human health and disorders. Annu Rev Biomed Eng 2017; 19 (01) 1-26
  • 55 Smock RG, Meijers R. Roles of glycosaminoglycans as regulators of ligand/receptor complexes. Open Biol 2018; 8 (10) 180026
  • 56 Koganti R, Memon A, Shukla D. Emerging roles of heparan sulfate proteoglycans in viral pathogenesis. Semin Thromb Hemost 2021; 47 (03) 283-294
  • 57 Chien S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 2007; 292 (03) H1209-H1224
  • 58 Pahakis MY, Kosky JR, Dull RO, Tarbell JM. The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem Biophys Res Commun 2007; 355 (01) 228-233
  • 59 Hsieh HJLC, Liu CA, Huang B, Tseng AH, Wang DL. Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J Biomed Sci 2014; 21 (01) 3
  • 60 Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 2003; 93 (10) e136-e142
  • 61 Boo YCHJ, Hwang J, Sykes M. et al. Shear stress stimulates phosphorylation of eNOS at Ser(635) by a protein kinase A-dependent mechanism. Am J Physiol Heart Circ Physiol 2002; 283 (05) H1819-H1828
  • 62 Bartosch AMW, Mathews R, Tarbell JM. Endothelial glycocalyx-mediated nitric oxide production in response to selective AFM pulling. Biophys J 2017; 113 (01) 101-108
  • 63 Benjamim CF, Silva JS, Fortes ZB, Oliveira MA, Ferreira SH, Cunha FQ. Inhibition of leukocyte rolling by nitric oxide during sepsis leads to reduced migration of active microbicidal neutrophils. Infect Immun 2002; 70 (07) 3602-3610
  • 64 Iozzo RV, Schaefer L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol 2015; 42: 11-55
  • 65 Li JP, Kusche-Gullberg M. Heparan sulfate: biosynthesis, structure, and function. Int Rev Cell Mol Biol 2016; 325: 215-273
  • 66 Marques C, Reis CA, Vivès RR, Magalhães A. Heparan sulfate biosynthesis and sulfation profiles as modulators of cancer signalling and progression. Front Oncol 2021; 11: 778752
  • 67 Tammi RH, Passi AG, Rilla K. et al. Transcriptional and post-translational regulation of hyaluronan synthesis. FEBS J 2011; 278 (09) 1419-1428
  • 68 Lierova A, Kasparova J, Filipova A. et al. Hyaluronic acid: known for almost a century, but still in vogue. Pharmaceutics 2022; 14 (04) 838
  • 69 Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 2008; 455 (7213) 674-678
  • 70 Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet 2019; 20 (11) 657-674
  • 71 Clere-Jehl R, Mariotte A, Meziani F, Bahram S, Georgel P, Helms J. JAK-STAT targeting offers novel therapeutic opportunities in sepsis. Trends Mol Med 2020; 26 (11) 987-1002
  • 72 O'Shea JJ, Holland SM, Staudt LM. JAKs and STATs in immunity, immunodeficiency, and cancer. N Engl J Med 2013; 368 (02) 161-170
  • 73 Goligorsky MS, Sun D. Glycocalyx in endotoxemia and sepsis. Am J Pathol 2020; 190 (04) 791-798
  • 74 Eustes AS, Campbell RA, Middleton EA. et al. Heparanase expression and activity are increased in platelets during clinical sepsis. J Thromb Haemost 2021; 19 (05) 1319-1330
  • 75 Lindahl U, Li J-P. Heparanase – discovery and targets. Adv Exp Med Biol 2020; 1221: 61-69
  • 76 Johnson JL. Metalloproteinases in atherosclerosis. Eur J Pharmacol 2017; 816: 93-106
  • 77 Becker BF, Jacob M, Leipert S, Salmon AHJ, Chappell D. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol 2015; 80 (03) 389-402
  • 78 Girish KS, Kemparaju K. The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 2007; 80 (21) 1921-1943
  • 79 Dogné S, Flamion B, Caron N. Endothelial glycocalyx as a shield against diabetic vascular complications: involvement of hyaluronan and hyaluronidases. Arterioscler Thromb Vasc Biol 2018; 38 (07) 1427-1439
  • 80 Sallisalmi M, Tenhunen J, Yang R, Oksala N, Pettilä V. Vascular adhesion protein-1 and syndecan-1 in septic shock. Acta Anaesthesiol Scand 2012; 56 (03) 316-322
  • 81 Saoraya J, Wongsamita L, Srisawat N, Musikatavorn K. Plasma syndecan-1 is associated with fluid requirements and clinical outcomes in emergency department patients with sepsis. Am J Emerg Med 2021; 42: 83-89
  • 82 Uchimido R, Schmidt EP, Shapiro NI. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care 2019; 23 (01) 16
  • 83 Martin L, De Santis R, Koczera P. et al. The synthetic antimicrobial peptide 19-2.5 interacts with heparanase and heparan sulfate in murine and human sepsis. PLoS One 2015; 10 (11) e0143583
  • 84 Nelson A, Berkestedt I, Bodelsson M. Circulating glycosaminoglycan species in septic shock. Acta Anaesthesiol Scand 2014; 58 (01) 36-43
  • 85 Martinod K, Wagner DD. Thrombosis: tangled up in NETs. Blood 2014; 123 (18) 2768-2776
  • 86 Visser M, Heitmeier S, Ten Cate H, Spronk HMH. Role of factor XIa and plasma kallikrein in arterial and venous thrombosis. Thromb Haemost 2020; 120 (06) 883-993
  • 87 Norris LA. Blood coagulation. Best Pract Res Clin Obstet Gynaecol 2003; 17 (03) 369-383
  • 88 Huntington JA. Mechanisms of glycosaminoglycan activation of the serpins in hemostasis. J Thromb Haemost 2003; 1 (07) 1535-1549
  • 89 Pan J, Qian Y, Weiser P. et al. Glycosaminoglycans and activated contact system in cancer patient plasmas. Prog Mol Biol Transl Sci 2010; 93: 473-495
  • 90 Deutsch E, Johnson SA, Seegers WH. Differentiation of certain platelet factors related to blood coagulation. Circ Res 1955; 3 (01) 110-115
  • 91 Sartori MT, Zurlo C, Bon M. et al. Platelet-derived microparticles bearing PF4 and anti-GAGS immunoglobulins in patients with sepsis. Diagnostics (Basel) 2020; 10 (09) 627
  • 92 Greinacher A, Holtfreter B, Krauel K. et al. Association of natural anti-platelet factor 4/heparin antibodies with periodontal disease. Blood 2011; 118 (05) 1395-1401
  • 93 Pouplard C, Rollin J, Gruel Y. Risk factors for heparin-induced thrombocytopenia: focus on Fcγ receptors. Thromb Haemost 2017; 116 (11) 799-805
  • 94 Eslin DE, Zhang C, Samuels KJ. et al. Transgenic mice studies demonstrate a role for platelet factor 4 in thrombosis: dissociation between anticoagulant and antithrombotic effect of heparin. Blood 2004; 104 (10) 3173-3180
  • 95 Hayes V, Johnston I, Arepally GM. et al. Endothelial antigen assembly leads to thrombotic complications in heparin-induced thrombocytopenia. J Clin Invest 2017; 127 (03) 1090-1098
  • 96 Maroney SA, Mast AE. New insights into the biology of tissue factor pathway inhibitor. J Thromb Haemost 2015; 13 (0 1, Suppl 1): S200-S207
  • 97 Bhakuni T, Ali MF, Ahmad I, Bano S, Ansari S, Jairajpuri MA. Role of heparin and non heparin binding serpins in coagulation and angiogenesis: a complex interplay. Arch Biochem Biophys 2016; 604: 128-142
  • 98 Chao J, Schmaier A, Chen LM, Yang Z, Chao L. Kallistatin, a novel human tissue kallikrein inhibitor: levels in body fluids, blood cells, and tissues in health and disease. J Lab Clin Med 1996; 127 (06) 612-620
  • 99 Chaaban H, Keshari RS, Silasi-Mansat R. et al. Inter-α inhibitor protein and its associated glycosaminoglycans protect against histone-induced injury. Blood 2015; 125 (14) 2286-2296
  • 100 Becker BF, Chappell D, Bruegger D, Annecke T, Jacob M. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res 2010; 87 (02) 300-310
  • 101 dela Paz NG, Melchior B, Shayo FY, Frangos JA. Heparan sulfates mediate the interaction between platelet endothelial cell adhesion molecule-1 (PECAM-1) and the Gαq/11 subunits of heterotrimeric G proteins. J Biol Chem 2014; 289 (11) 7413-7424
  • 102 Schabbauer G, Tencati M, Pedersen B, Pawlinski R, Mackman N. PI3K-Akt pathway suppresses coagulation and inflammation in endotoxemic mice. Arterioscler Thromb Vasc Biol 2004; 24 (10) 1963-1969
  • 103 Cavaillon J-M, Adib-Conquy M. Monocytes/macrophages and sepsis. Crit Care Med 2005; 33 (12, Suppl): S506-S509
  • 104 Wu C, Lu W, Zhang Y. et al. Inflammasome activation triggers blood clotting and host death through pyroptosis. Immunity 2019; 50 (06) 1401-1411.e4
  • 105 Zhang H, Zeng L, Xie M. et al. TMEM173 drives lethal coagulation in sepsis. Cell Host Microbe 2020; 27 (04) 556-570.e6
  • 106 Fang R, Jiang Q, Guan Y. et al. Golgi apparatus-synthesized sulfated glycosaminoglycans mediate polymerization and activation of the cGAMP sensor STING. Immunity 2021; 54 (05) 962-975.e8
  • 107 Lentsch AB, Kato A, Davis B, Wang W, Chao C, Edwards MJ. STAT4 and STAT6 regulate systemic inflammation and protect against lethal endotoxemia. J Clin Invest 2001; 108 (10) 1475-1482
  • 108 Chen H, Sun H, You F. et al. Activation of STAT6 by STING is critical for antiviral innate immunity. Cell 2011; 147 (02) 436-446
  • 109 Gotthardt D, Trifinopoulos J, Sexl V, Putz EM. JAK/STAT cytokine signaling at the crossroad of NK cell development and maturation. Front Immunol 2019; 10: 2590
  • 110 Cavé MC, Maillard S, Hildenbrand K, Mamelonet C, Feige MJ, Devergne O. Glycosaminoglycans bind human IL-27 and regulate its activity. Eur J Immunol 2020; 50 (10) 1484-1499
  • 111 Hasselbalch HC, Elvers M, Schafer AI. The pathobiology of thrombosis, microvascular disease, and hemorrhage in the myeloproliferative neoplasms. Blood 2021; 137 (16) 2152-2160
  • 112 Beckman JD, DaSilva A, Aronovich E. et al. JAK-STAT inhibition reduces endothelial prothrombotic activation and leukocyte-endothelial proadhesive interactions. J Thromb Haemost 2023; 21 (05) 1366-1380
  • 113 Xu D, Esko JD. Demystifying heparan sulfate-protein interactions. Annu Rev Biochem 2014; 83 (01) 129-157
  • 114 Ricard-Blum S, Perez S. Glycosaminoglycan interaction networks and databases. Curr Opin Struct Biol 2022; 74: 102355
  • 115 Li W, Johnson DJ, Esmon CT, Huntington JA. Structure of the antithrombin-thrombin-heparin ternary complex reveals the antithrombotic mechanism of heparin. Nat Struct Mol Biol 2004; 11 (09) 857-862
  • 116 Tollefsen DM. Vascular dermatan sulfate and heparin cofactor II. Prog Mol Biol Transl Sci 2010; 93: 351-372
  • 117 Shworak NW, Kobayashi T, de Agostini A, Smits NC. Anticoagulant heparan sulfate to not clot–or not?. Prog Mol Biol Transl Sci 2010; 93: 153-178
  • 118 Ndonwi M, Burlingame OO, Miller AS, Tollefsen DM, Broze Jr GJ, Goldberg DE. Inhibition of antithrombin by Plasmodium falciparum histidine-rich protein II. Blood 2011; 117 (23) 6347-6354
  • 119 Bray B, Lane DA, Freyssinet JM, Pejler G, Lindahl U. Anti-thrombin activities of heparin. Effect of saccharide chain length on thrombin inhibition by heparin cofactor II and by antithrombin. Biochem J 1989; 262 (01) 225-232
  • 120 Dinarvand P, Yang L, Biswas I, Giri H, Rezaie AR. Plasmodium falciparum histidine rich protein HRPII inhibits the anti-inflammatory function of antithrombin. J Thromb Haemost 2020; 18 (06) 1473-1483
  • 121 Levi M, van der Poll T, Schultz M. Infection and inflammation as risk factors for thrombosis and atherosclerosis. Semin Thromb Hemost 2012; 38 (05) 506-514
  • 122 Lelubre C, Vincent JL. Mechanisms and treatment of organ failure in sepsis. Nat Rev Nephrol 2018; 14 (07) 417-427
  • 123 Shimada K, Ozawa T, Kobayashi M. Human recombinant interleukin-1β- and tumor necrosis factor α-mediated suppression of heparin-like compounds on cultured porcine aortic endothelial cells. J Cell Physiol 2005; 144 (03) 383-390
  • 124 Maurer LM, Ma W, Mosher DF. Dynamic structure of plasma fibronectin. Crit Rev Biochem Mol Biol 2015; 51 (04) 213-227
  • 125 Zhu J, Li X, Yin J, Hu Y, Gu Y, Pan S. Glycocalyx degradation leads to blood-brain barrier dysfunction and brain edema after asphyxia cardiac arrest in rats. J Cereb Blood Flow Metab 2018; 38 (11) 1979-1992
  • 126 Pappa A, Jackson P, Stone J. et al. An ultrastructural and systemic analysis of glycosaminoglycans in thyroid-associated ophthalmopathy. Eye (Lond) 1998; 12 (Pt 2): 237-244
  • 127 Goffin YA, de Gouveia RH, Szombathelyi T, Toussaint JM, Gruys E. Morphologic study of homograft valves before and after cryopreservation and after short-term implantation in patients. Cardiovasc Pathol 1997; 6 (01) 35-42
  • 128 Inagawa R, Okada H, Takemura G. et al. Ultrastructural alteration of pulmonary capillary endothelial glycocalyx during endotoxemia. Chest 2018; 154 (02) 317-325
  • 129 Chappell D, Jacob M, Hofmann-Kiefer K. et al. Antithrombin reduces shedding of the endothelial glycocalyx following ischaemia/reperfusion. Cardiovasc Res 2009; 83 (02) 388-396
  • 130 Chappell D, Jacob M, Paul O. et al. The glycocalyx of the human umbilical vein endothelial cell: an impressive structure ex vivo but not in culture. Circ Res 2009; 104 (11) 1313-1317
  • 131 Groner W, Winkelman JW, Harris AG. et al. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med 1999; 5 (10) 1209-1212
  • 132 Nieuwdorp M, Meuwese MC, Mooij HL. et al. Measuring endothelial glycocalyx dimensions in humans: a potential novel tool to monitor vascular vulnerability. J Appl Physiol 2008; 104 (03) 845-852
  • 133 Ando Y, Okada H, Takemura G. et al. Brain-specific ultrastructure of capillary endothelial glycocalyx and its possible contribution for blood brain barrier. Sci Rep 2018; 8 (01) 17523
  • 134 Massey MJ, Shapiro NI. A guide to human in vivo microcirculatory flow image analysis. Crit Care 2016; 20 (01) 35
  • 135 Xiao S, Tang Y, Lin Y, Lv Z, Chen L. Tracking osteoarthritis progress through cationic nanoprobe-enhanced photoacoustic imaging of cartilage. Acta Biomater 2020; 109: 153-162
  • 136 Pomin VH. NMR-based dynamics of free glycosaminoglycans in solution. Analyst (Lond) 2014; 139 (15) 3656-3665
  • 137 Manzi AE, Norgard-Sumnicht K, Argade S, Marth JD, van Halbeek H, Varki A. Exploring the glycan repertoire of genetically modified mice by isolation and profiling of the major glycan classes and nano-NMR analysis of glycan mixtures. Glycobiology 2000; 10 (07) 669-689
  • 138 Dekker NAM, Veerhoek D, Koning NJ. et al. Postoperative microcirculatory perfusion and endothelial glycocalyx shedding following cardiac surgery with cardiopulmonary bypass. Anaesthesia 2019; 74 (05) 609-618
  • 139 Bush MA, Florence SM, Yeo TW. et al. Degradation of endothelial glycocalyx in Tanzanian children with falciparum malaria. FASEB J 2021; 35 (09) e21805
  • 140 Kuźnik-Trocha K, Winsz-Szczotka K, Komosińska-Vassev K. et al. Plasma and urine levels of glycosaminoglycans in patients with systemic sclerosis and their relationship to selected interleukins and marker of early kidney injury. J Clin Med 2022; 11 (21) 6354
  • 141 Qiao M, Lin L, Xia K, Li J, Zhang X, Linhardt RJ. Recent advances in biotechnology for heparin and heparan sulfate analysis. Talanta 2020; 219: 121270
  • 142 Wang Z, Dhurandhare VM, Mahung CA. et al. Improving the sensitivity for quantifying heparan sulfate from biological samples. Anal Chem 2021; 93 (32) 11191-11199
  • 143 Bratulic S, Limeta A, Dabestani S. et al. Noninvasive detection of any-stage cancer using free glycosaminoglycans. Proc Natl Acad Sci U S A 2022; 119 (50) e2115328119
  • 144 Sun X, Li L, Overdier KH. et al. Analysis of total human urinary glycosaminoglycan disaccharides by liquid chromatography-tandem mass spectrometry. Anal Chem 2015; 87 (12) 6220-6227
  • 145 Bratulic S, Limeta A, Maccari F. et al. Analysis of normal levels of free glycosaminoglycans in urine and plasma in adults. J Biol Chem 2022; 298 (02) 101575
  • 146 Wang Z, Arnold K, Dhurandahare VM. et al. Analysis of 3-O-sulfated heparan sulfate using isotopically labeled oligosaccharide calibrants. Anal Chem 2022; 94 (06) 2950-2957
  • 147 Li G, Li L, Tian F, Zhang L, Xue C, Linhardt RJ. Glycosaminoglycanomics of cultured cells using a rapid and sensitive LC-MS/MS approach. ACS Chem Biol 2015; 10 (05) 1303-1310
  • 148 Pimienta G, Heithoff DM, Rosa-Campos A. et al. Plasma proteome signature of sepsis: a functionally connected protein network. Proteomics 2019; 19 (05) e1800389
  • 149 Weiss RJ, Spahn PN, Chiang AWT. et al. Genome-wide screens uncover KDM2B as a modifier of protein binding to heparan sulfate. Nat Chem Biol 2021; 17 (06) 684-692
  • 150 Toledo AG, Golden G, Campos AR. et al. Proteomic atlas of organ vasculopathies triggered by Staphylococcus aureus sepsis. Nat Commun 2019; 10 (01) 4656
  • 151 Golden GJ, Toledo AG, Marki A. et al. Endothelial heparan sulfate mediates hepatic neutrophil trafficking and injury during Staphylococcus aureus sepsis. MBio 2021; 12 (05) e0118121
  • 152 Volpi N, Linhardt RJ. High-performance liquid chromatography-mass spectrometry for mapping and sequencing glycosaminoglycan-derived oligosaccharides. Nat Protoc 2010; 5 (06) 993-1004
  • 153 Volpi N, Galeotti F, Yang B, Linhardt RJ. Analysis of glycosaminoglycan-derived, precolumn, 2-aminoacridone-labeled disaccharides with LC-fluorescence and LC-MS detection. Nat Protoc 2014; 9 (03) 541-558
  • 154 Miller RL, Guimond SE, Schwörer R. et al. Shotgun ion mobility mass spectrometry sequencing of heparan sulfate saccharides. Nat Commun 2020; 11 (01) 1481
  • 155 Hook AL, Hogwood J, Gray E, Mulloy B, Merry CLR. High sensitivity analysis of nanogram quantities of glycosaminoglycans using ToF-SIMS. Commun Chem 2021; 4 (01) 67
  • 156 Clerc O, Deniaud M, Vallet SD. et al. MatrixDB: integration of new data with a focus on glycosaminoglycan interactions. Nucleic Acids Res 2019; 47 (D1): D376-D381
  • 157 Hogan JD, Klein JA, Wu J. et al. Software for peak finding and elemental composition assignment for glycosaminoglycan tandem mass spectra. Mol Cell Proteomics 2018; 17 (07) 1448-1456
  • 158 Duan J, Pepi L, Amster IJ. A scoring algorithm for the automated analysis of glycosaminoglycan MS/MS data. J Am Soc Mass Spectrom 2019; 30 (12) 2692-2703
  • 159 Karlsson R, Chopra P, Joshi A. et al. Dissecting structure-function of 3-O-sulfated heparin and engineered heparan sulfates. Sci Adv 2021; 7 (52) eabl6026
  • 160 Zhang F, Lee KB, Linhardt RJ. SPR biosensor probing the interactions between TIMP-3 and heparin/GAGs. Biosensors (Basel) 2015; 5 (03) 500-512
  • 161 Kim SY, Jin W, Sood A. et al. Characterization of heparin and severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions. Antiviral Res 2020; 181: 104873
  • 162 Shi D, He P, Song Y. et al. Kinetic and structural aspects of glycosaminoglycan-monkeypox virus protein A29 interactions using surface plasmon resonance. Molecules 2022; 27 (18) 5898
  • 163 Salek-Ardakani S, Arrand JR, Shaw D, Mackett M. Heparin and heparan sulfate bind interleukin-10 and modulate its activity. Blood 2000; 96 (05) 1879-1888
  • 164 Ambrosius M, Kleesiek K, Götting C. Quantitative determination of the glycosaminoglycan Delta-disaccharide composition of serum, platelets and granulocytes by reversed-phase high-performance liquid chromatography. J Chromatogr A 2008; 1201 (01) 54-60
  • 165 Yang B, Chang Y, Weyers AM, Sterner E, Linhardt RJ. Disaccharide analysis of glycosaminoglycan mixtures by ultra-high-performance liquid chromatography-mass spectrometry. J Chromatogr A 2012; 1225: 91-98
  • 166 Song S, Yu Q, Zhang B. et al. Quantification and comparison of acidic polysaccharides in edible fish intestines and livers using HPLC-MS/MS. Glycoconj J 2017; 34 (05) 625-632
  • 167 Kozak RP, Tortosa CB, Fernandes DL, Spencer DI. Comparison of procainamide and 2-aminobenzamide labeling for profiling and identification of glycans by liquid chromatography with fluorescence detection coupled to electrospray ionization-mass spectrometry. Anal Biochem 2015; 486: 38-40
  • 168 Wang DLF. Identification of heparin and heparan sulfate by HILIC-MS /MS. Shandong Daxue Xuebao Yixue Ban 2021; 59: 41-47
  • 169 Šimek M, Hermannová M, Šmejkalová D. et al. LC-MS/MS study of in vivo fate of hyaluronan polymeric micelles carrying doxorubicin. Carbohydr Polym 2019; 209: 181-189
  • 170 Karlsson NG, Schulz BL, Packer NH, Whitelock JM. Use of graphitised carbon negative ion LC-MS to analyse enzymatically digested glycosaminoglycans. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 824 (1–2): 139-147
  • 171 Osago H, Shibata T, Hara N. et al. Quantitative analysis of glycosaminoglycans, chondroitin/dermatan sulfate, hyaluronic acid, heparan sulfate, and keratan sulfate by liquid chromatography-electrospray ionization-tandem mass spectrometry. Anal Biochem 2014; 467: 62-74
  • 172 Forni G, Malvagia S, Funghini S. et al. LC-MS/MS method for simultaneous quantification of heparan sulfate and dermatan sulfate in urine by butanolysis derivatization. Clin Chim Acta 2019; 488: 98-103
  • 173 Turiák L, Tóth G, Ozohanics O. et al. Sensitive method for glycosaminoglycan analysis of tissue sections. J Chromatogr A 2018; 1544: 41-48
  • 174 Logsdon AF, Francis KL, Richardson NE. et al. Decoding perineuronal net glycan sulfation patterns in the Alzheimer's disease brain. Alzheimers Dement 2022; 18 (05) 942-954
  • 175 Wang J, Bhalla A, Ullman JC. et al. High-throughput liquid chromatography-tandem mass spectrometry quantification of glycosaminoglycans as biomarkers of mucopolysaccharidosis II. Int J Mol Sci 2020; 21 (15) 5449