Synlett
DOI: 10.1055/a-2278-5797
letter

Rhodium-Catalyzed Decarbonylative Intramolecular Arylation of 2-(1H-Indole-1-carbonyl)benzoic Acids

a   Tenure-Track Program for Innovative Research, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan
,
Yosuke Takemura
b   Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
,
b   Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
› Author Affiliations
This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI, Grant Numbers JP23K13743 and JP21K05061).


Abstract

We developed a redox-neutral synthesis of isoindoloindolone via intramolecular arylation of 2-(1H-indole-1-carbonyl)benzoic acids. This protocol facilitates the formation of various substituted isoindoloindolones in yields ranging from 17% to 80%. Our mechanistic investigations indicate the pivotal role of NaI: the iodide anion promotes the formation of the desired isoindoloindolone, and the sodium cation suppresses the formation of acylated byproducts, thereby enabling the selective formation of isoindoloindolones in acceptable yields.

Supporting Information



Publication History

Received: 15 February 2024

Accepted after revision: 28 February 2024

Accepted Manuscript online:
28 February 2024

Article published online:
20 March 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 2a Boussard MF, Truche S, Rojas AR, Briss S, Decscamps S, Droual M, Wierzbicki M, Ferry G, Aundint V, Delagrange P, Boutin JA. Biochem. Pharmacol. 2006; 41: 306
    • 2b Guillaumel J, Pierre L, Renard P, Pfeiffer B, Peruchon L, Arimondo P, Monneret C. Oncol. Res. 2003; 13: 537
    • 3a Crenshaw MD, Zimmer H. J. Heterocycl. Chem. 1984; 21: 623
    • 3b Wang L, Sun M, Ding MW. Eur. J Org. Chem. 2017; 18: 2568
  • 4 Kim G, Kim JH, Kim W, Kim YA. Tetrahedron Lett. 2003; 44: 8207
  • 6 Kandukuri SR, Oestreich M. J. Org. Chem. 2012; 77: 8750

    • For selected reviews on decarboxylative/decarbonylative arylations using carboxylic acids, see:
    • 7a Rodríguez N, Goossen LJ. Chem. Soc. Rev. 2011; 40: 5030
    • 7b Dzik WI, Lange PP, Gooβen LJ. Chem. Sci. 2012; 3: 2671
    • 7c Wei Y, Hu P, Zhang M, Su W. Chem. Rev. 2017; 117: 8864
    • 7d Perry GJ. P, Larrosa I. Eur. J. Org. Chem. 2017; 3517
    • 7e Majumder S, Ghosh S, Pyne P, Ghosh A, Ghosh D, Hajra A. Chem. Rec. 2022; 22: e202100288

      For selected examples on decarboxylative arylation using carboxylic acids, see:
    • 8a Voutchkova A, Coplin A, Leadbeater NE, Crabtree RH. Chem. Commun. 2008; 6312
    • 8b Wang C, Piel I, Glorius F. J. Am. Chem. Soc. 2009; 131: 4194
    • 8c Cornella J, Lu P, Larrosa I. Org. Lett. 2009; 11: 5506
    • 8d Zhang F, Greaney MF. Angew. Chem. Int. Ed. 2010; 49: 2768
    • 8e Zhou J, Hu P, Zhang M, Huang S, Wang M, Su W. Chem. Eur. J. 2010; 16: 5876
    • 8f Hu P, Zhang M, Jie X, Su W. Angew. Chem. Int. Ed. 2012; 51: 227
    • 8g Zhao S, Liu Y.-J, Yan S.-Y, Chen F.-J, Zhang Z.-Z, Shi B.-F. Org. Lett. 2015; 17: 3338
    • 8h Chen L, Ju L, Bustin KA, Hoover JM. Chem. Commun. 2015; 51: 15059
    • 8i Patra T, Nandi S, Sahoo SK, Maiti D. Chem. Commun. 2016; 52: 1432
    • 8j Honeycutt AP, Hoover JM. ACS Catal. 2017; 7: 4597
    • 8k Li Y, Qian F, Wang M, Lu H, Li G. Org. Lett. 2017; 19: 5589
    • 8l Yang K, Song M, Ma Z, Li Y, Li Z, Sun X. Org. Chem. Front. 2019; 6: 3996
    • 8m Singh S, Shinde VN, Kumar S, Meena N, Bhuvanesh N, Rangan K, Kumar A, Joshi H. Chem. Asian J. 2023; 18: e2023006

      For selected examples on decarbonylative arylations using carboxylic acids with acid anhydrides, see:
    • 9a Pan F, Lei Z.-Q, Wang H, Li H, Sun J, Shi Z.-J. Angew. Chem. Int. Ed. 2013; 52: 2063
    • 9b Maetani S, Fukuyama T, Ryu I. Org. Lett. 2013; 15: 2754
    • 9c Lei Z.-Q, Ye J.-H, Sun J, Shi Z.-J. Org. Chem. Front. 2014; 1: 634
    • 9d Zhang L, Xue X, Xu C, Pan Y, Zhang G, Xu L, Li H, Shi Z. ChemCatChem 2014; 6: 3069
    • 9e Kwon S, Kang D, Hong S. Eur. J. Org. Chem. 2015; 3671
    • 9f Qiu X, Wang P, Wang D, Wang M, Yuan Y, Shi Z. Angew. Chem. Int. Ed. 2019; 58: 1504
    • 9g Zhao H, Xu J, Xu X, Pan Y, Yu Z, Xu L, Fan Q, Walsh PJ. Adv. Synth. Catal. 2021; 363: 3995

      For our previous reports on Rh(I)-catalyzed C–H activation with carboxylic acids, see:
    • 10a Suzuki H, Liao Y, Kawai Y, Matsuda T. Eur. J. Org. Chem. 2021; 4938
    • 10b Suzuki H, Sasamori F, Mastuda T. Org. Lett. 2022; 24: 1141
    • 10c Suzuki H, Kawai Y, Takemura Y, Matsuda T. Org. Biomol. Chem. 2022; 20: 2808
    • 10d Suzuki H, Ito Y, Matsuda T. Chem. Lett. 2022; 51: 775
    • 10e Suzuki H, Takemura Y, Matsuda T. Synlett 2023; 34: 1894
  • 11 Fukuyama T, Sugimori T, Maetani S, Ryu I. Org. Biomol. Chem. 2018; 16: 7583

    • For selected reviews on transition-metal-mediated decarbonylation, see:
    • 12a Dermenci A, Dong G. Sci. China Chem. 2013; 56: 685
    • 12b Lu H, Yu T.-Y, Xu P.-F, Wei H. Chem. Rev. 2021; 121: 365
    • 12c Saikia P, Gogoi S. Org. Biomol. Chem. 2021; 19: 8853
  • 13 Dang Q, Chen J, Li T, Liu L, Huang T, Li C, Chen T. J. Org. Chem. 2023; 88: 12808
  • 14 Typical Experimental Procedure for the Rhodium-Catalyzed Decarbonylative Intramolecular Arylation of Benzoic Acids 1 To an oven-dried test tube equipped with a stirring bar were added benzoic acid 1 (0.3 mmol), [RhCl(nbd)]2 (6.9 mg, 0.015 mmol), and NaI (11.2 mg, 0.075 mmol), followed by the addition of 1,4-dioxane (0.6 mL). Subsequently, Piv2O (83.8 mg, 91 μL, 0.45 mmol) was injected into the solution via a syringe, and the tube was sealed with a PTFE-lined cap. The reaction mixture was stirred at 170 °C for 18 h. After cooling to room temperature, the mixture was filtered through a pad of silica gel (EtOAc/hexane = 1:1). The filtrate was concentrated under reduced pressure, and the residue was purified by preparative thin-layer chromatography to yield product 2. 1-Methyl-6H-isoindolo[2,1-a]indol-6-one (2c) The title compound was obtained as a yellow solid (54.6 mg, 78%); purified by preparative TLC (dichloromethane/toluene/hexane = 1:1:2); mp 143.2–143.8 °C. 1H NMR (500 MHz, CDCl3): δ = 7.68–7.62 (m, 2 H), 7.45–7.37 (m, 2 H), 7.27–7.21 (m, 1 H), 7.11 (t, J = 7.7 Hz, 1 H), 6.88 (d, J = 7.4 Hz, 1 H), 6.53 (s, 1 H), 2.40 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 162.5, 138.0, 134.6, 133.9, 133.6, 133.5, 133.2, 131.8, 128.5, 126.2, 125.0, 124.4, 120.9, 110.7, 101.9, 18.3. IR (neat): 3424, 3115, 2100, 1733, 1621, 1494, 1468, 1448, 1386, 1282, 1218, 1183, 1145, 1080, 906, 827, 778, 759, 693, 545 cm–1. HRMS (ESI-TOF): m/z calcd for C16H11NNaO+ [M + Na]+: 256.0733; found: 256.0736. 2-Bromo-6H-isoindolo[2,1-a]indol-6-one (2i) The title compound was obtained as a yellow solid (41.8 mg, 47%); purified by preparative TLC (dichloromethane/toluene/hexane = 1:1:1); mp 174.1–175.0 °C. 1H NMR (500 MHz, CDCl3): δ = 7.77–7.69 (m, 2 H), 7.58–7.46 (m, 3 H), 7.39–7.31 (m, 2 H), 6.50 (s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 162.3, 139.8, 136.1, 134.2, 133.9, 133.6, 132.1, 129.2, 128.9, 125.4, 124.9, 121.4, 116.9, 114.4, 102.3. IR (neat): 3116, 1728, 1621, 1437, 1380, 1355, 1318, 1174, 1140, 1047, 865, 798, 759, 695 cm–1. HRMS (ESI-TOF): m/z calcd for C15H8 79BrNNaO+ [M + Na]+: 319.9681; found: 319.9669.