Synlett
DOI: 10.1055/a-2283-0623
account
Carbohydrate Chemistry in China

Advances on the Synthesis of C-Aryl-glycosides Since 2019

Jiagen Li
a   Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. of China
,
Xuefeng Jiang
a   Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. of China
b   School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. of China
c   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
› Author Affiliations
The authors are grateful for financial support provided by the National Natural Science Foundation of China (NSFC) (22125103), the Science and Technology Commission of Shanghai Municipality (STCSM) (22JC1401000), and the China Postdoctoral Science Foundation (2023M731094 and BX20230127).


Abstract

Aryl-glycosides represent a significant subclass of crucial glycosidic compounds, increasingly capturing the attention of pharmaceutical developers as bioelectronic motifs embedded within glycosides. Their outstanding resistance to enzymatic hydrolysis bestows a distinctive advantage in the field of drug development, particularly in therapeutic domains such as diabetes treatment, where pharmaceuticals based on the C-aryl-glycoside architecture manifest compelling therapeutic efficacy. As a result, researchers in the realm of synthetic chemistry have diligently explored and devised a plethora of streamlined and efficacious synthetic methodologies. This comprehensive account systematically delineates methodologies employed in recent years for the efficient synthesis of C-aryl-glycosides, offering insights into three primary directions: transition-metal catalysis, radical strategies, and metal-free catalysis processes.

1 Introduction

2 Glycosylation via Transition-Metal Catalytic Approaches

3 Glycosylation via Glycosyl Radical Approaches

4 Glycosylation via Metal-Free Catalytic Approaches

5 Conclusion and Outlook



Publication History

Received: 21 January 2024

Accepted after revision: 07 March 2024

Accepted Manuscript online:
07 March 2024

Article published online:
20 March 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Liao H, Ma J, Yao H, Liu XW. Org. Biomol. Chem. 2018; 16: 1791
  • 2 Kitamura K, Ando Y, Matsumoto T, Suzuki K. Chem. Rev. 2018; 118: 1495
  • 3 Yang Y, Yu B. Chem. Rev. 2017; 117: 12281
  • 4 Clercq ED. J. Med. Chem. 2016; 59: 2301
  • 5 Bokor E, Kun S, Goyard D, Toth M, Praly JP, Vidal S, Somsak L. Chem. Rev. 2017; 117: 1687
  • 6 Ernst B, Magnani JL. Nat. Rev. Drug Discovery 2009; 8: 661
  • 7 Wu C.-Y, Wong C.-H. Chem. Commun. 2011; 47: 6201
    • 8a Moran S, Ren RX.-F, Kool ET. Proc. Natl. Acad. Sci. U.S.A. 1997; 94: 10506
    • 8b Anderson JP, Daifuku R, Loeb LA. Annu. Rev. Microbiol. 2004; 58: 183
    • 9a Bililign T, Griffith BR, Thorson JS. Nat. Prod. Rep. 2005; 22: 742
    • 9b Seley-Radtke KL, Yates MK. Antiviral Res. 2018; 154: 66
    • 9c Yates MK, Seley-Radtke KL. Antiviral Res. 2019; 162: 5
  • 10 Kharel MK, Pahari P, Shepherd MD, Tibrewal N, Nybo SE, Shaaban KA, Rohr J. Nat. Prod. Rep. 2012; 29: 264
  • 11 Julien B, Tian Z.-Q, Reid R, Reeves CD. Chem. Biol. 2006; 13: 1277
  • 12 Li Q, Levi SM, Wagen CC, Wendlandt AE, Jacobsen EN. Nature 2022; 608: 74
  • 13 Lv W, Chen Y, Wen S, Ba D, Cheng G. J. Am. Chem. Soc. 2020; 142: 14864
  • 14 Gong H, Gagné MR. J. Am. Chem. Soc. 2008; 130: 12177
  • 15 Zhu F, Rourke MJ, Yang T, Rodriguez J, Walczak MA. J. Am. Chem. Soc. 2016; 138: 12049
  • 16 Zhu F, Rodriguez J, Yang T, Kevlishvili I, Miller E, Yi D, O’Neill S, Rourke MJ, Liu P, Walczak MA. J. Am. Chem. Soc. 2017; 139: 17908
  • 17 Wang Q, An S, Deng Z, Zhu W, Huang Z, He G, Chen G. Nat. Catal. 2019; 2: 793
  • 18 Hong B, Li C, Wang Z, Chen J, Li H, Lei X. J. Am. Chem. Soc. 2015; 137: 11946
  • 19 Hu L, Shen P.-X, Shao Q, Hong K, Qiao JX, Yu J.-Q. Angew. Chem. Int. Ed. 2019; 58: 2134
  • 20 Wang S, Chen K, Guo F, Zhu W, Liu C, Dong H, Yu J.-Q, Lei X. ACS Cent. Sci. 2023; 9: 1129
    • 21a Day CS, Somerville RJ, Martin R. Nat. Catal. 2021; 4: 124
    • 21b Yoo C, Bhattacharya S, See XY, Cunningham DW, Acosta-Calle S, Perri ST, West NM, Mason DC, Meade CD, Osborne CW, Turner PW, Kilgore RW, King J, Cowden JH, Grajeda JM, Miller AJ. M. Science 2023; 382: 815
    • 21c Mao R, Xi S, Shah S, Roy MJ, John A, Lingford JP, Gäde G, Scott NE, Goddard-Borger ED. J. Am. Chem. Soc. 2021; 143: 12699
  • 22 Gong L, Sun H.-B, Deng L.-F, Zhang X, Liu J, Yang S, Niu D. J. Am. Chem. Soc. 2019; 141: 7680
  • 23 Li Y, Wang Z, Li L, Tian X, Shao F, Li C. Angew. Chem. Int. Ed. 2022; 61: e202110391
    • 24a Adak L, Kawamura S, Toma G, Takenaka T, Isozaki K, Takaya H, Orita A, Li HC, Shing TK. M, Nakamura M. J. Am. Chem. Soc. 2017; 139: 10693
    • 24b Wang Q, Sun Q, Jiang Y, Zhang H, Yu L, Tian C, Chen G, Koh MJ. Nat. Synth. 2022; 1: 235
    • 24c Nicolas L, Angibaud P, Stansfield I, Bonnet P, Meerpoel L, Reymond S, Cossy J. Angew. Chem. Int. Ed. 2012; 51: 11101
    • 24d Mu Q.-Q, Guo A.-X, Cai X, Qin Y.-Y, Liu X.-L, Ye F.-Z, Yang H.-J, Xiao X, Liu X.-W. Org. Lett. 2023; 25: 7040
    • 24e Yu C, Liu Y, Xie X, Hu S, Zhang S, Zeng M, Zhang D, Wang J, Liu H. Adv. Synth. Catal. 2021; 363: 4926
    • 24f Zhu W, Sun Q, Chang H, Zhang H.-X, Wang Q, Chen G, He G. Chin. J. Chem. 2022; 40: 571
    • 24g Shi W.-Y, Li H.-Y, Gou X.-Y, Luan Y.-Y, Zheng N, Niu Z.-J, Zhang Z, Liu X.-Y, Liang Y.-M. Adv. Synth. Catal. 2022; 364: 2796
    • 24h Wu J, Kaplaneris J, Pöhlmann J, Michiyuki T, Yuan B, Ackermann L. Angew. Chem. Int. Ed. 2022; 61: e202208620
    • 25a Wang X.-G, Li Y, Liu H.-C, Zhang B.-S, Gou X.-Y, Wang Q, Ma J.-W, Liang Y.-M. J. Am. Chem. Soc. 2019; 141: 13914
    • 25b Gou X.-Y, Li Y, Wang X.-G, Liu H.-C, Zhang B.-S, Zhao J.-H, Zhou Z.-Z, Liang Y.-M. Chem. Commun. 2019; 55: 5487
  • 26 Gou X.-Y, Li Y, Shi W.-Y, Luan Y.-Y, Ding Y.-N, An Y, Huang Y.-C, Zhang B.-S, Liu X.-Y, Liang Y.-M. Angew. Chem. Int. Ed. 2022; 61: e202205656
  • 27 Goti G. ChemCatChem 2022; 14: e202200290
    • 28a Dumoulin A, Matsui JK, Gutierrez-Bonet A, Molander GA. Angew. Chem. Int. Ed. 2018; 57: 6614
    • 28b Ji P. Org. Lett. 2019; 21: 3086
    • 28c Wang Q, Duan J, Tang P, Chen G, He G. Sci. China Chem. 2020; 63: 1613
  • 29 Wei Y, Ben-zvi B, Diao T. Angew. Chem. Int. Ed. 2021; 60: 9433
  • 30 Jordheim LP, Durantel D, Zoulim F, Dumontet C. Nat. Rev. Drug Discovery 2013; 12: 447
  • 32 Xia L, Fan W, Yuan X.-A, Yu S. ACS Catal. 2021; 11: 9397
    • 33a Zeng J, Wang R, Zhang S, Fang J, Liu S, Sun G, Xu B, Xiao Y, Fu D, Zhang W, Hu Y, Wan Q. J. Am. Chem. Soc. 2019; 141: 8509
    • 33b Xiao X, Zeng J, Fang J, Sun J, Li T, Song Z, Cai L, Wan Q. J. Am. Chem. Soc. 2020; 142: 5498
  • 34 Xie D, Wang Y, Zhang X, Fu Z, Niu D. Angew. Chem. Int. Ed. 2022; 61: e202204922
    • 35a Wan L.-Q, Zhang X, Zou Y, Shi R, Cao J.-G, Xu S.-Y, Deng L.-F, Zhou L, Gong Y, Shu X, Lee GY, Ren H, Dai L, Qi S, Houk KN, Niu D. J. Am. Chem. Soc. 2021; 143: 11919
    • 35b Zhang C. Zuo H., Lee G. Y., Zou Y., Dang Q.-D., Houk K. N., Niu D. 2022; 14: 686
  • 36 Zhang C, Xu S.-Y, Zuo H, Zhang X, Dang Q.-D, Niu D. Nat. Synth. 2023; 2: 251
  • 37 Aguillón AR, Mascarello A, Segretti ND, de Azevedo HF. Z, Guimaraes CR. W, Miranda LS. M, de Souza RO. M A. Org. Process Res. Dev. 2018; 22: 467
  • 38 Wang Q, Lee BC, Song N, Koh MJ. Angew. Chem. Int. Ed. 2023; 62: e2023010
  • 39 Shi W, Liu C, Lei A. Chem. Soc. Rev. 2011; 40: 2761
  • 40 Parasrama M, Gevorgyan V. Chem. Soc. Rev. 2017; 46: 6227
  • 41 Obradors C, Mitschke B, Aukland MH, Leutzsch M, Grossmann O, Brunen S, Schwengers SA, List B. Angew. Chem. Int. Ed. 2022; 61: e202114619
  • 42 Xu S, Zhang W, Li C, Li Y, Zeng H, Wang Y, Zhang Y, Niu D. Angew. Chem. Int. Ed. 2023; 62: e202218303
    • 43a Xiao X, Feng M, Jiang X. Angew. Chem. Int. Ed. 2016; 55: 14121
    • 43b Xiao X, Xue J, Jiang X. Nat. Commun. 2018; 9: 2191
    • 43c Wang M, Dai Z, Jiang X. Nat. Commun. 2019; 10: 2661
    • 43d Meng Y, Wang M, Jiang X. Angew. Chem. Int. Ed. 2020; 59: 1346
    • 43e Xue J, Jiang X. Nat. Commun. 2020; 11: 4170
    • 43f Zeng D, Ma Y, Deng W.-P, Wang M, Jiang X. Nat. Synth. 2022; 1: 455
    • 43g Liao Y, Zhang S, Jiang X. Angew. Chem. Int. Ed. 2023; 62: e202303625
  • 44 Li J, Wang M, Jiang X. Org. Lett. 2021; 23: 9053
  • 45 Li J, Jiang X. Chin. J. Chem. 2023; 41: 2843