RSS-Feed abonnieren
DOI: 10.1055/a-2566-2169
Biomarker als Wegweiser für Präzisionsneurorehabilitation

Dieser Artikel betont die Bedeutung von Biomarkern für eine präzisionsbasierte Neurorehabilitation, die individuell an die biologische Genesung und Umweltfaktoren angepasst ist. Traditionelle Therapieansätze sind oft unstrukturiert und berücksichtigen individuelle Unterschiede in der Genesung nicht. Biomarker bieten objektive, quantifizierbare Daten zur Krankheitsprogression und Therapieantwort, wodurch eine genaue, adaptive Behandlungsplanung ermöglicht wird. Diese Entwicklung markiert einen wichtigen Übergang von standardisierten zu personalisierten Therapieansätzen.
Publikationsverlauf
Artikel online veröffentlicht:
05. Juni 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Wade D. An interdisciplinary approach to neurological rehabilitation. Oxford Textbook of Neurorehabilitation. 2015: 8-17
- 2 Lin DJ, Backus D, Chakraborty S. et al. Transforming modeling in neurorehabilitation: Clinical insights for personalized rehabilitation. Journal of Neuroengineering and Rehabilitation 2024; 21: 18
- 3 Schenkman M, Deutsch JE, Gill-Body KM. An integrated framework for decision making in neurologic physical therapist practice. Physical Therapy 2006; 86: 1681-1702
- 4 FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource [Internet]. Silver Spring (MD): Food and Drug Administration (US). 2016 Im Internet https://www.ncbi.nlm.nih.gov/books/NBK326791/ Stand: 30.03.2025
- 5 Boyd LA, Hayward KS, Ward NS. et al. Biomarkers of stroke recovery: Consensus-based core recommendations from the stroke recovery and rehabilitation roundtable. International Journal of Stroke 2017; 12: 480-493
- 6 Sharma VK, Singh TG, Mehta V, Mannan A. Biomarkers: Role and scope in neurological disorders. Neurochemical Research 2023; 48: 2029-2058
- 7 Mojtabavi H, Shaka Z, Momtazmanesh S. et al. Circulating brain-derived neurotrophic factor as a potential biomarker in stroke: A systematic review and meta-analysis. Journal of Translational Medicine 2022; 20: 126
- 8 Khalil M, Teunissen CE, Otto M. et al. Neurofilaments as biomarkers in neurological disorders. Nature Reviews Neurology 2018; 14: 577-589
- 9 Calderone A, Latella D, Cardile D. et al. The role of neuroinflammation in shaping neuroplasticity and recovery outcomes following traumatic brain injury: A systematic review. International Journal of Molecular Sciences 2024; 25: 11708
- 10 Rezaeitalab F, Esmaeili M, Saberi A. et al. Predictive value of inflammatory markers for functional outcomes in patients with ischemic stroke. Current Journal of Neurology 2020; 19: 47
- 11 Bao Q, Zhang J, Wu X. et al. Clinical significance of plasma D-dimer and fibrinogen in outcomes after stroke: A systematic review and meta-analysis. Cerebrovascular Diseases 2023; 52: 318-343
- 12 Wilczyńska K, Waszkiewicz N. Diagnostic utility of selected serum dementia biomarkers: Amyloid β-40, amyloid β-42, tau protein, and YKL-40: A review. Journal of Clinical Medicine 2020; 9: 3452
- 13 Michetti F, D’Ambrosi N, Toesca A. et al. The S100B story: From biomarker to active factor in neural injury. Journal of Neurochemistry 2019; 148: 168-187
- 14 Abdelhak A, Foschi M, Abu-Rumeileh S. et al. Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nature Reviews Neurology 2022; 18: 158-172
- 15 Stinear CM, Byblow WD, Ackerley SJ. et al. PREP2: A biomarker-based algorithm for predicting upper limb function after stroke. Annals of Clinical and Translational. Neurology 2017; 4: 811-820
- 16 Pauli R, O’Donnell A, Cruse D. Resting-state electroencephalography for prognosis in disorders of consciousness following traumatic brain injury. Frontiers in Neurology 2020; 11: 586945
- 17 Keser Z, Buchl SC, Seven NA. et al. Electroencephalogram (EEG) with or without transcranial magnetic stimulation (TMS) as biomarkers for post-stroke recovery: A narrative review. Frontiers in Neurology. 2022. 13. 827866
- 18 Pruvost-Robieux E, Marchi A, Martinelli I. et al. Evoked and event-related potentials as biomarkers of consciousness state and recovery. Journal of Clinical Neurophysiology 2022; 39: 22-31
- 19 Christidi F, Tsiptsios D, Fotiadou A. et al. Diffusion tensor imaging as a prognostic tool for recovery in acute and hyperacute stroke. Neurology International 2022; 14: 841-874
- 20 Edlow BL, Claassen J, Schiff ND, Greer DM. Recovery from disorders of consciousness: Mechanisms, prognosis and emerging therapies. Nature Reviews Neurology 2021; 17: 135-156
- 21 Branscheidt M, Ejaz N, Xu J. et al. No evidence for motor-recovery-related cortical connectivity changes after stroke using resting-state fMRI. Journal of Neurophysiology 2022; 127: 637-650
- 22 Tahmi M, Kane VA, Pavol MA, Naqvi IA. et al. Neuroimaging biomarkers of cognitive recovery after ischemic stroke. Frontiers in Neurology 2022; 13: 923942
- 23 Cortese AM, Cacciante L, Schuler AL. et al. Cortical thickness of brain areas beyond stroke lesions and sensory-motor recovery: A systematic review. Frontiers in Neuroscience 2021; 15: 764671
- 24 Wang Y, Bartels HM, Nelson LD. A systematic review of ASL perfusion MRI in mild TBI. Neuropsychology Review 2023; 33: 160-191
- 25 Aries MJ, Elting JW, De Keyser J. et al. Cerebral autoregulation in stroke: A review of transcranial Doppler studies. Stroke 2010; 41: 2697-2704
- 26 Engle J, Saberi P, Bain P. et al. Oxygen extraction fraction (OEF) values and applications in neurological diseases. Neurological Sciences 2024; 45: 3007-3020
- 27 Zhang R, Meng J, Wang X. et al. Metabolomics of ischemic stroke: Insights into risk prediction and mechanisms. Metabolic Brain Disease 2022; 37: 2163-2180
- 28 Morris T, Gomes Osman J, Tormos Munoz JM. et al. The role of physical exercise in cognitive recovery after traumatic brain injury: A systematic review. Restorative Neurology and Neuroscience 2016; 34: 977-988
- 29 Hakiminia B, Alikiaii B, Khorvash F, Mousavi S. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities. Fundamental & Clinical Pharmacology 2022; 36: 612-662
- 30 Schwarz A, Kanzler CM, Lambercy O. et al. Systematic review on kinematic assessments of upper limb movements after stroke. Stroke 2019; 50: 718-727
- 31 Saes M, Mohamed Refai MI, van Beijnum BJF. et al. Quantifying quality of reaching movements longitudinally post-stroke: A systematic review. Neurorehabilitation and Neural Repair 2022; 36: 183-207
- 32 Saa JP, Tse T, Baum CM. et al. Cognitive recovery after stroke: A meta-analysis and metaregression of intervention and cohort studies. Neurorehabilitation and Neural Repair 2021; 35: 585-600
- 33 Rebernik T, Jacobi J, Jonkers R. et al. A review of data collection practices using electromagnetic articulography. Laboratory Phonology 2021; 12: 6
- 34 Chiaramonte R, Pavone P, Vecchio M. Speech rehabilitation in dysarthria after stroke: A systematic review of the studies. European Journal of Physical and Rehabilitation Medicine 2020; 56: 547-562