CC BY 4.0 · Synlett 2025; 36(11): 1569-1573
DOI: 10.1055/a-2567-1399
letter
Supramolecular Catalysis and Molecular Switches

2,8-Dihalogenated Diazocines: Versatile Reactants for Functionalized Photoswitches

,
,
Vivienne Prangenberg
,
Johannes S. Kruse
,

This work was supported by the Fonds der Chemischen Industrie (Liebig Fellowship) and the German Research Foundation (DFG; Emmy Noether Programme, 446317932). M.J.N. and V.S. thank the FCI and Avicenna-Studienwerk, respectively, for their Ph.D. scholarships.


Abstract

Diazocine photoswitches possess distinctive structural characteristics and remarkable photochemical properties, leading to their growing application in photopharmacology and smart materials. We report the synthesis of 2,8-pseudo-para-substituted diazocines with two bromo, two iodo, or a combination of both substituents, achieving effective scalability. Besides demonstrating good reactivity in Suzuki cross-coupling reactions, the substituted diazocines predominantly retain their good photochemical properties, rendering them valuable components for said applications.

Supporting Information



Publication History

Received: 25 February 2025

Accepted after revision: 21 March 2025

Accepted Manuscript online:
26 March 2025

Article published online:
12 May 2025

© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Siewertsen R, Neumann H, Buchheim-Stehn B, Herges R, Näther C, Renth F, Temps F. J. Am. Chem. Soc. 2009; 131: 15594
  • 2 Maier MS, Hüll K, Reynders M, Matsuura BS, Leippe P, Ko T, Schäffer L, Trauner D. J. Am. Chem. Soc. 2019; 141: 17295
  • 3 Ewert J, Heintze L, Jordà-Redondo M, von Glasenapp J.-S, Nonell S, Bucher G, Peifer C, Herges R. J. Am. Chem. Soc. 2022; 144: 15059
  • 4 Heintze L, Schmidt D, Rodat T, Witt L, Ewert J, Kriegs M, Herges R, Peifer C. Int. J. Mol. Sci. 2020; 21: 8961
  • 5 López-Cano M, Scortichini M, Tosh DK, Salmaso V, Ko T, Salort G, Filgaira I, Soler C, Trauner D, Hernando J, Jacobson KA, Ciruela F. J. Am. Chem. Soc. 2025; 147: 874
  • 6 Cabré G, Garrido-Charles A, González-Lafont A, Moormann W, Langbehn D, Egea D, Lluch JM, Herges R, Alibés R, Busqué F, Gorostiza P, Hernando J. Org. Lett. 2019; 21: 3780
  • 7 Li S, Han G, Zhang W. Macromolecules 2018; 51: 4290
  • 8 Burk MH, Langbehn D, Hernández Rodríguez G, Reichstein W, Drewes J, Schröder S, Rehders S, Strunskus T, Herges R, Faupel F. ACS Appl. Polym. Mater. 2021; 3: 1445
  • 9 Li S, Bamberg K, Lu Y, Sönnichsen FD, Staubitz A. Polymers 2023; 15: 1306
  • 10 Burk MH, Schröder S, Moormann W, Langbehn D, Strunskus T, Rehders S, Herges R, Faupel F. Macromolecules 2020; 53: 1164
  • 11 Wang Y, Yuan Y, Zhang S, Chen L, Chen Y. Chin. J. Chem. 2024; 42: 3278
  • 12 Li S, Colaco R, Staubitz A. ACS Appl. Polym. Mater. 2022; 4: 6825
  • 13 Bannwarth C, Ehlert S, Grimme S. J. Chem. Theory Comput. 2019; 15: 1652
  • 14 Okada T, Sugihara M, Bondar A.-N, Elstner M, Entel P, Buss V. J. Mol. Biol. 2004; 342: 571
  • 15 Choe H.-W, Kim YJ, Park JH, Morizumi T, Pai EF, Krauß N, Hofmann KP, Scheerer P, Ernst OP. Nature 2011; 471: 651
  • 16 Löw R, Rusch T, Röhricht F, Magnussen O, Herges R. Beilstein J. Org. Chem. 2019; 15: 1485
  • 17 Bastien G, Severa L, Škuta M, Santos Hurtado C, Rybáček J, Šolínová V, Císařová I, Kašička V, Kaleta J. Chem. Eur. J. 2024; 30: e202401889
  • 18 Li S, Eleya N, Staubitz A. Org. Lett. 2020; 22: 1624
  • 19 Hugenbusch D, Lehr M, von Glasenapp J.-S, McConnell AJ, Herges R. Angew. Chem. Int. Ed. 2023; 62: e202212571
  • 20 Zheng T, Tan L, Lee M, Li Y, Sim E, Lee M. J. Am. Chem. Soc. 2024; 146: 25451
  • 21 Schultzke S, Walther M, Staubitz A. Molecules 2021; 26: 3916
  • 22 Lee H, Tessarolo J, Langbehn D, Baksi A, Herges R, Clever GH. J. Am. Chem. Soc. 2022; 144: 3099
  • 23 Deng J, Wu X, Guo G, Zhao X, Yu Z. Org. Biomol. Chem. 2020; 18: 5602
  • 24 Berry J, Lindhorst TK, Despras G. Chem. Eur. J. 2022; 28: e202200354
  • 25 Moormann W, Langbehn D, Herges R. Beilstein J. Org. Chem. 2019; 15: 727
  • 26 2-Bromo-8-iodo-11,12-dihydrodibenzo[c,g][1,2]diazocine (3) A solution of mCPBA (75%, 2.58 g, 11.22 mmol, 2.00 equiv) in glacial HOAc (~0.6 M) was added to a solution of bromo iodo dianiline I (2.34 g, 5.61 mmol, 1.00 equiv) in 1:3 glacial HOAc–CH2Cl2 (60 mL) over 24 hours using a syringe pump. The mixture was then stirred for 18 h at r.t., then neutralized with sat. aq NaHCO3. The organic layer was separated, washed with sat. aq NaHCO3 (25 mL) and sat. aq NaCl (25 mL), dried (MgSO4), and concentrated by rotary evaporation. The residue was purified by column chromatography [silica gel, cyclohexane–EtOAc (100:0 to 70:30 over 15 column volumes)] to give a yellow solid; yield: 1.47 g (63%, 3.56 mmol). Rf = 0.56 (cyclohexane–EtOAc, 8:2). 1H NMR (500 MHz, CD2Cl2): δ = 2.64–2.96 (m, 4 H, H-7, H-8), 6.74 (d, J = 8.3 Hz, 1 H, H-11), 6.78 (d, J = 8.1 Hz, 1 H, H-5), 7.16 (d, J = 1.8, 1 H, H-2), 7.18 (d, J = 2.1 Hz, 1 H, H-14), 7.31 (dd, J = 8.4 Hz, 2.1, 1 H, H-12), 7.39 (dd, J = 8.1, 1.8 Hz, 1 H, H-4). 13C NMR (126 MHz, CD2Cl2): δ = 31.0 (C-7), 31.1 (C-8), 90.9 (C-3), 120.3 (C-13), 120.6 (C-11), 127.2 (C-2), 127.7 (C-6), 129.9 (C-12), 130.2 (C-9), 131.6 (C-15), 132.4 (C-14), 136.1 (C-4), 154.1 (C-10), 156.2 (C-1). HRMS (ESI+ Orbitrap): m/z [M + H]+ calcd for C14H15BrIN2 = 412.9145; found: 412.9138.