RSS-Feed abonnieren

DOI: 10.1055/a-2572-0778
Study on the Synthesis and Biological Activity of Trifluoroacetamide Promoted by Base without Transition-Metal Participation
We are grateful for the financial support from the National Natural Science Foundation of China (GZ-1645), the Key Research and Development Projects of Shaanxi Province (2022GY-195, 2023-YBGY-183), the Natural Science Basic Research Program of Shaanxi Province (2021JLM-30), and Natural Science Foundation of Shaanxi Provincial Department of Education (23JC035).

Abstract
We herein report a transition-metal-free coupling reaction that enables the efficient synthesis of trifluoroacetylaniline compounds using 1,1-dibromo-3,3,3-trifluoroacetone as the trifluoroacetylation reagent. The reaction conditions are mild and only one equivalent of base is required. The reaction exhibits good tolerance towards a variety of functional groups in the substrates. The biological bactericidal activities of two of the compounds were studied and it was found that one exhibits good bactericidal effects, with a bactericidal rate of over 99% against Bacillus subtilis. We believe that this research result will provide a good technical foundation for future drug-molecule screening.
Key words
trifluoroacetyl - aromatic amines - bactericidal activity - transition-metal free - dibromotrifluoroacetoneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2572-0778.
- Supporting Information
Publikationsverlauf
Eingereicht: 04. Februar 2025
Angenommen nach Revision: 31. März 2025
Accepted Manuscript online:
01. April 2025
Artikel online veröffentlicht:
17. Juni 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 Key BD, Howell RD, Criddle CS. Environ. Sci. Technol. 1997; 31: 2445
- 2 Champagne PA, Desroches J, Hamel J.-D, Vandamme M, Paquin J.-F. Chem. Rev. 2015; 115: 9073
- 3 Chen C.-P, Wang C, Zhang J.-Y, Zhao Y.-S. J. Org. Chem. 2014; 80: 942
- 4 Zhou Y, Wang J, Gu Z.-N, Wang S.-N, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
- 5 Wang K, Kong W.-Q. ACS Catal. 2023; 13: 12238
- 6 Zhao Y.-Y, Gao L, Li H.-G, Sun P.-W, Meng F.-F, Zhang Y, Xie Y.-T, Sun B.-Q, Zhou S, Ma Y, Xiong L.-X, Yang N, Li Y.-X, Li Z.-M. J. Agric. Food Chem. 2020; 68: 11282
- 7 Campbell MG, Ritter T. Org. Process Res. Dev. 2014; 18: 474
- 8 Campbell MG, Ritter T. Chem. Rev. 2014; 115: 612
- 9 Yerien DE, Barata-Vallejo S, Postigo A. Chem. Eur. J. 2017; 23: 14676
- 10 He Z.-B, Hu M.-Y, Luo T, Li L.-C, Hu J.-B. Angew. Chem. Int. Ed. 2012; 51: 11545
- 11 Zhu J.-S, Liu Y.-F, Shen Q.-L. Angew. Chem. Int. Ed. 2016; 55: 9050
- 12 Xiao H.-W, Zhang Z.-Z, Fang Y.-W, Zhu L, Li C.-Z. Chem. Soc. Rev. 2021; 50: 6308
- 13 Li G.-B, Zhang C, Song C, Ma Y.-D. Beilstein J. Org. Chem. 2018; 14: 155
- 14 Gietter-Burch AA. S, Devannah V, Watson DA. Org. Lett. 2017; 19: 2957
- 15 Morstein J, Hou H.-Y, Cheng C, Hartwig JF. Angew. Chem. Int. Ed. 2016; 55: 8054
- 16 Singh RP, Ghoshal T, Mishra V. Asian J. Org. Chem. 2024; 13: e202400179
- 17 Amii H. Chem. Rec. 2023; 23: e202300154
- 18 Wang H.-Z, Sun X, Linghu C.-C, Deng Y, Wang Y.-P, Wei C.-Y, Wang J, Zhang L. Tetrahedron Lett. 2023; 118: 154385
- 19 Liu J, Xiao Y.-S, Hao J, Shen Q.-L. Org. Lett. 2023; 25: 1204
- 20 Zhang B, Peng Q.-P, Guo D.-H, Wang J. Org. Lett. 2020; 22: 443
- 21 Jiang C, Wang L, Zhang H.-G, Chen P.-H, Guo Y.-L, Liu G.-S. Chem 2020; 6: 2407
- 22 Zhou Y.-R, Zhang C.-Y, Yuan J.-J, Yang Q, Xiao Q, Peng Y.-Y. Tetrahedron Lett. 2016; 57: 3222
- 23 Li B.-W, Zeng W.-B, Wang L, Geng Z.-S, Loh T.-P, Xie P.-Z. Org. Lett. 2021; 23: 5235
- 24 Zhang W, Lin J.-H, Wu W.-F, Cao Y.-C, Xiao J.-C. Chin. J. Chem. 2019; 38: 169
- 25 Yang X, Sun R, Li S, Zheng X.-L, Yuan M.-L, Xu B, Jiang W.-D, Chen H.-Y, Fu H, Li R.-X. Org. Lett. 2020; 22: 7108
- 26 Alam MM, Varala R, Seema V. Mini-Rev. Org. Chem. 2024; 21: 455
- 27 Rossen K. Org. Process Res. Dev. 2023; 27: 1421
- 28 Xue J.-H, Li Y, Liu Y, Li Q.-J, Wang H.-G. Angew. Chem. Int. Ed. 2024; 63: e202319030
- 29 Hong J.-Q, Wang G.-F, Huo L.-G, Zheng C.-G. Chin. J. Chem. 2017; 35: 1761
- 30 Liu P, Lei Z.-L, Peng Y.-Y, Liu Z.-J, Zhu F.-Q, Liu J.-T, Wu F.-H. Adv. Synth. Catal. 2018; 360: 3418
- 31 Kumar A, Mathew S, Jamali MF, Ahamad S, Kant R, Mohanan K. Adv. Synth. Catal. 2023; 365: 2218
- 32 Wang L.-B, Wang J.-P, Ye S.-T, Jiang B.-H, Guo Z.-H, Mumtaz Y, Yi W.-B. Angew. Chem. Int. Ed. 2022; 61: e202212115
- 33 Nguyen TT. ChemistrySelect 2020; 5: 12148
- 34 Xu J, Cheng K, Shen C, Bai R, Xie Y, Zhang P. ChemCatChem 2018; 10: 965
- 35 Hyune-Jea L, Jeong-Un J, Se-Jun Y, Dong-Pyo K, Heejin K. Nat. Commun. 2023; 14: 1231
- 36 Gao J, Ma R, Poovan F, Zhang L, Atia H, Kalevaru NV, Sun W, Wohlrab S, Chusov DA, Wang N, Jagadeesh R, Beller M. Nat. Commun. 2023; 14: 5013
- 37 Obieta M, Urgoitia G, Herrero MT, SanMartin R. Catal. Sci. Technol. 2024; 14: 478
- 38 Mcbee ET, Burton TM. J. Am. Chem. Soc. 1952; 74: 3902
- 39 Li S.-Y, Yang X.-Y, Shen P.-H, Xu L, Xu J, Zhang Q, Xu H.-J. J. Org. Chem. 2023; 88: 17284
- 40 Lu B, Zhang Z.-H, Jiang M, Liang D, He Z.-W, Bao F.-S, Xiao W.-J, Chen J.-R. Angew. Chem. Int. Ed. 2023; 62: e202309460
- 41 Zhao T.-F, Xu X.-L, Sun W.-Y, Lu Y. Org. Lett. 2023; 25: 4968
- 42 Huang Y, Wan Y.-C, Shao Y, Zhan L.-W, Li B.-D, Hou J. Green Chem. 2023; 25: 8280
- 43 Großmann LM, Beier V, Duttenhofer L, Lennartz L, Opatz T. Chem. Eur. J. 2022; 28: e202201768
- 44 Liu C, Li K, Shang R. ACS Catal. 2022; 12: 4103