RSS-Feed abonnieren
DOI: 10.1055/a-2625-4829
Neue multimodale Bildgebungstechniken für die Lungenzirkulation
Emerging Multimodality Imaging Techniques for the Pulmonary CirculationAuthors

Zusammenfassung
Die pulmonale Hypertonie (PH) ist eine komplexe und heterogene Erkrankung, was die exakte Klassifikation, Diagnosestellung und Therapie erschwert. Zwischenzeitlich etablierte Ansätze zur Beurteilung der PH umfassen die Echokardiografie, die Lungenszintigrafie und Schnittbildgebung mittels CT und MRT, was allerdings nur indirekt auf die zugrunde liegende Pathologie schließen lässt. Derzeit existieren neuartige Bildgebungstechniken, mit deren Hilfe die Lungenperfusion und die kardiopulmonale Interaktion umfassend beurteilt werden können. In diesem Artikel soll der derzeitige Forschungsstand im Hinblick auf diese Bildgebungstechniken und der zeitgleichen Anwendung von KI im Bereich PH zusammengefasst werden. Diese neuartigen Methoden versprechen eine Verbesserung des Verständnisses der Pathomechanismen dieser diagnostisch anspruchsvollen Erkrankung. Dadurch könnten die Diagnosestellung und die Klassifikation präziser werden. Für eine breite Anwendung sind jedoch weitere Schritte notwendig und zudem Geräte- und Personalverfügbarkeit limitierend.
Abstract
Pulmonary hypertension (PH) is a complex and heterogeneous disease, which complicates its precise classification, diagnosis, and treatment. Established approaches for assessing PH include echocardiography, lung scintigraphy, and cross-sectional imaging using CT and MRI, which, however, only indirectly reveal the underlying pathology. Novel imaging techniques currently exist that allow for comprehensive assessment of lung perfusion and cardiopulmonary interaction. This article summarizes the current state of research regarding novel multimodal imaging techniques and the simultaneous application of AI in the field of PH. These novel methods promise to improve our understanding of the pathomechanisms of this diagnostically challenging disease. This could make diagnosis and classification more precise and complement treatment planning and patient monitoring. However, further steps are necessary for widespread application, and also equipment and personnel availability are limiting.
Publikationsverlauf
Artikel online veröffentlicht:
06. Oktober 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Piccari L, Aguilar-Colindres R, Rodríguez-Chiaradía DA. Pulmonary hypertension in interstitial lung disease and in chronic obstructive pulmonary disease: different entities?. Curr Opin Pulm Med 2023; 29: 370-379
- 2 Synn AJ, De Margerie-Mellon C, Jeong SY. et al. Vascular remodeling of the small pulmonary arteries and measures of vascular pruning on computed tomography. Pulm Circ 2021; 11: 1-9
- 3 Rahaghi FN, Argemí G, Nardelli P. et al. Pulmonary vascular density: comparison of findings on computed tomography imaging with histology. Eur Respir J 2019; 54: 1900370
- 4 Helmberger M, Pienn M, Urschler M. et al. Quantification of Tortuosity and Fractal Dimension of the Lung Vessels in Pulmonary Hypertension Patients. PLoS ONE 2014; 9: e87515
- 5 Pienn M, Gertz RJ, Gerhardt F. et al. CT-derived lung vessel morphology correlates with prognostic markers in precapillary pulmonary hypertension. J Heart Lung Transplant 2024; 43: 54-65
- 6 Takagi H, Ota H, Sugimura K. et al. Dual-energy CT to estimate clinical severity of chronic thromboembolic pulmonary hypertension: Comparison with invasive right heart catheterization. Eur J Radiol 2016; 85: 1574-1580
- 7 Nakazawa T, Watanabe Y, Hori Y. et al. Lung Perfused Blood Volume Images With Dual-Energy Computed Tomography for Chronic Thromboembolic Pulmonary Hypertension: Correlation to Scintigraphy With Single-Photon Emission Computed Tomography. J Comput Assist Tomogr 2011; 35: 590-595
- 8 Masy M, Giordano J, Petyt G. et al. Dual-energy CT (DECT) lung perfusion in pulmonary hypertension: concordance rate with V/Q scintigraphy in diagnosing chronic thromboembolic pulmonary hypertension (CTEPH). Eur Radiol 2018; 28: 5100-5110
- 9 Dournes G, Verdier D, Montaudon M. et al. Dual-energy CT perfusion and angiography in chronic thromboembolic pulmonary hypertension: diagnostic accuracy and concordance with radionuclide scintigraphy. Eur Radiol 2014; 24: 42-51
- 10 Kröger JR, Gerhardt F, Dumitrescu D. et al. Diagnosis of pulmonary hypertension using spectral-detector CT. Int J Cardiol 2019; 285: 80-85
- 11 Dupont A, Koether V, Labreuche J. et al. Dual-energy CT lung perfusion in systemic sclerosis: preliminary experience in 101 patients. Eur Radiol 2022; 33: 401-413
- 12 Koike H, Sueyoshi E, Sakamoto I. et al. Comparative clinical and predictive value of lung perfusion blood volume CT, lung perfusion SPECT and catheter pulmonary angiography images in patients with chronic thromboembolic pulmonary hypertension before and after balloon pulmonary angioplasty. Eur Radiol 2018; 28: 5091-5099
- 13 Singh R, Nie RZ, Homayounieh F. et al. Quantitative lobar pulmonary perfusion assessment on dual-energy CT pulmonary angiography: applications in pulmonary embolism. Eur Radiol 2020; 30: 2535-2542
- 14 Moher Alsady T, Kaireit TF, Behrendt L. et al. Comparison of dual-energy computer tomography and dynamic contrast-enhanced MRI for evaluating lung perfusion defects in chronic thromboembolic pulmonary hypertension. PLoS ONE 2021; 16: e0251740
- 15 Estepar RSJ, Ross JC, Russian K. et al. Computational vascular morphometry for the assessment of pulmonary vascular disease based on scale-space particles. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI) [Internet]. Barcelona, Spain: IEEE; 2012: 1479-1482
- 16 Synn AJ, Zhang C, Washko GR. et al. Cigarette Smoke Exposure and Radiographic Pulmonary Vascular Morphology in the Framingham Heart Study. Annals ATS 2019; 16: 698-706
- 17 Washko GR, Nardelli P, Ash SY. et al. Arterial Vascular Pruning, Right Ventricular Size, and Clinical Outcomes in Chronic Obstructive Pulmonary Disease. A Longitudinal Observational Study. Am J Respir Crit Care Med 2019; 200: 454-461
- 18 Matsuoka S, Washko GR, Yamashiro T. et al. Pulmonary Hypertension and Computed Tomography Measurement of Small Pulmonary Vessels in Severe Emphysema. Am J Respir Crit Care Med 2010; 181: 218-225
- 19 Wells JM, Iyer AS, Rahaghi FN. et al. Pulmonary Artery Enlargement Is Associated With Right Ventricular Dysfunction and Loss of Blood Volume in Small Pulmonary Vessels in Chronic Obstructive Pulmonary Disease. Circ Cardiovasc Imaging 2015; 8: e002546
- 20 Rahaghi FN, Ross JC, Agarwal M. et al. Pulmonary Vascular Morphology as an Imaging Biomarker in Chronic Thromboembolic Pulmonary Hypertension. Pulm Circ 2016; 6: 70-81
- 21 Synn AJ, Li W, San José Estépar R. et al. Pulmonary Vascular Pruning on Computed Tomography and Risk of Death in the Framingham Heart Study. Am J Respir Crit Care Med 2021; 203: 251-4
- 22 Rahaghi FN, Nardelli P, Harder E. et al. Quantification of Arterial and Venous Morphologic Markers in Pulmonary Arterial Hypertension Using CT Imaging. Chest 2021; 160: 2220-2231
- 23 Lefebvre B, Kyheng M, Giordano J. et al. Dual-energy CT lung perfusion characteristics in pulmonary arterial hypertension (PAH) and pulmonary veno-occlusive disease and/or pulmonary capillary hemangiomatosis (PVOD/PCH): preliminary experience in 63 patients. Eur Radiol 2022; 32: 4574-4586
- 24 Bird E, Hasenstab K, Kim N. et al. Mapping the Spatial Extent of Hypoperfusion in Chronic Thromboembolic Pulmonary Hypertension Using Multienergy CT. Radiol Cardiothorac Imaging 2023; 5: e220221
- 25 Kerber B, Flohr T, Ulrich S. et al. Photon-Counting CT Iodine Maps for Diagnosing Chronic Pulmonary Thromboembolism: A Pilot Study. Invest Radiol 2025; 60: 328-333
- 26 Hagan G, Southwood M, Treacy C. et al. 18FDG PET Imaging can Quantify Increased Cellular Metabolism in Pulmonary Arterial Hypertension: A Proof‐of‐Principle Study. Pulm Circ 2011; 1: 448-455
- 27 Xu W, Koeck T, Lara AR. et al. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci USA 2007; 104: 1342-347
- 28 Saygin D, Highland KB, Farha S. et al. Metabolic and Functional Evaluation of the Heart and Lungs in Pulmonary Hypertension by Gated 2‐[18F]‐Fluoro‐2‐deoxy‐D‐glucose Positron Emission Tomography. Pulm Circ 2017; 7: 428-438
- 29 Ruiter G, Wong YY, Raijmakers P. et al. Pulmonary 2‐Deoxy‐2‐[18F]‐Fluoro‐D‐Glucose Uptake is Low in Treated Patients with Idiopathic Pulmonary Arterial Hypertension. Pulm Circ 2013; 3: 647-653
- 30 Xi XY, Gao W, Gong JN. et al. Value of 18F-FDG PET/CT in differentiating malignancy of pulmonary artery from pulmonary thromboembolism: a cohort study and literature review. Int J Cardiovasc Imaging 2019; 35: 1395-1403
- 31 Ito K, Kubota K, Morooka M. et al. Diagnostic usefulness of 18F-FDG PET/CT in the differentiation of pulmonary artery sarcoma and pulmonary embolism. Ann Nucl Med 2009; 23: 671-676
- 32 Yang Z, Li F, Thandavarayan RA. et al. Early detection of pulmonary arterial hypertension through [18F] positron emission tomography imaging with a vascular endothelial receptor small molecule. Pulm Circ 2024; 14: e12393
- 33 Saunders LC, Hughes PJC, Alabed S. et al. Integrated Cardiopulmonary MRI Assessment of Pulmonary Hypertension. J Magn Reson Imaging 2022; 55: 633-652
- 34 Ohno Y, Murase K, Higashino T. et al. Assessment of bolus injection protocol with appropriate concentration for quantitative assessment of pulmonary perfusion by dynamic contrast‐enhanced MR imaging. J Magn Reson Imaging 2007; 25: 55-65
- 35 Triphan SMF, Bauman G, Konietzke P. et al. Magnetic Resonance Imaging of Lung Perfusion. J Magn Reson Imaging 2024; 59: 784-796
- 36 Ohno Y, Koyama H, Nogami M. et al. Dynamic perfusion MRI: Capability for evaluation of disease severity and progression of pulmonary arterial hypertension in patients with connective tissue disease. J Magn Reson Imaging 2008; 28: 887-899
- 37 Schoenfeld C, Hinrichs JB, Olsson KM. et al. Cardio-pulmonary MRI for detection of treatment response after a single BPA treatment session in CTEPH patients. Eur Radiol 2019; 29: 1693-1702
- 38 Moher Alsady T, Voskrebenzev A, Behrendt L. et al. Multicenter Standardization of Phase‐Resolved Functional Lung MRI in Patients With Suspected Chronic Thromboembolic Pulmonary Hypertension. J Magn Reson Imaging 2024; 59: 1953-1964
- 39 Kheyfets VO, Schafer M, Podgorski CA. et al. 4D magnetic resonance flow imaging for estimating pulmonary vascular resistance in pulmonary hypertension. J Magn Reson Imaging 2016; 44: 914-922
- 40 Schäfer M, Barker AJ, Kheyfets V. et al. Helicity and Vorticity of Pulmonary Arterial Flow in Patients With Pulmonary Hypertension: Quantitative Analysis of Flow Formations. JAHA 2017; 6: e007010
- 41 Helderman F, Mauritz G, Andringa KE. et al. Early onset of retrograde flow in the main pulmonary artery is a characteristic of pulmonary arterial hypertension. J Magn Reson Imaging 2011; 33: 1362-1368
- 42 Bissell MM, Raimondi F, Ait Ali L. et al. 4D Flow cardiovascular magnetic resonance consensus statement: 2023 update. J Cardiovasc Magn Reson 2023; 25: 40
- 43 Ota H, Kamada H, Higuchi S. et al. Clinical Application of 4D Flow MR Imaging to Pulmonary Hypertension. MRMS 2022; 21: 309-318
- 44 Pöhler GH, Klimes F, Voskrebenzev A. et al. Chronic Thromboembolic Pulmonary Hypertension Perioperative Monitoring Using Phase‐Resolved Functional Lung (PREFUL)‐MRI. J Magn Reson Imaging 2020; 52: 610-619
- 45 Kamada H, Nakamura M, Ota H. et al. Blood flow analysis with computational fluid dynamics and 4D-flow MRI for vascular diseases. J Cardiol 2022; 80: 386-396
- 46 Jorge E, Baptista R, Calisto J. et al. Optical coherence tomography of the pulmonary arteries: A systematic review. J Cardiol 2016; 67: 6-14
- 47 Ishiguro H, Kataoka M, Inami T. et al. Diversity of Lesion Morphology in CTEPH Analyzed by OCT, Pressure Wire, and Angiography. JACC Cardiovasc Imaging 2016; 9: 324-325
- 48 Inohara T, Kawakami T, Kataoka M. et al. Lesion morphological classification by OCT to predict therapeutic efficacy after balloon pulmonary angioplasty in CTEPH. Int J Cardiol 2015; 197: 23-25
- 49 Rodes-Cabau J. Intravascular ultrasound of the elastic pulmonary arteries: a new approach for the evaluation of primary pulmonary hypertension. Heart 2003; 89: 311-315
- 50 Shen JY, Cai ZY, Sun LY. et al. The Application of Intravascular Ultrasound to Evaluate Pulmonary Vascular Properties and Mortality in Patients with Pulmonary Arterial Hypertension. J Am Soc Echocardiogr 2016; 29: 103-111
- 51 Lau EMT, Iyer N, Ilsar R. et al. Abnormal Pulmonary Artery Stiffness in Pulmonary Arterial Hypertension: In Vivo Study with Intravascular Ultrasound. PLoS One 2012; 7: e33331
- 52 Domingo E, Grignola JC, Aguilar R. et al. In Vivo Assessment of Pulmonary Arterial Wall Fibrosis by Intravascular Optical Coherence Tomography in Pulmonary Arterial Hypertension: A New Prognostic Marker of Adverse Clinical Follow-Up. TORMJ 2013; 7: 26-32
- 53 Dai Z, Fukumoto Y, Tatebe S. et al. OCT Imaging for the Management of Pulmonary Hypertension. JACC Cardiovasc Imaging 2014; 7: 843-845
- 54 Lang I, Meyer BC, Ogo T. et al. Balloon pulmonary angioplasty in chronic thromboembolic pulmonary hypertension. Eur Respir Rev 2017; 26: 160119
- 55 Kazimierczyk R, Szumowski P, Nekolla SG. et al. Prognostic role of PET/MRI hybrid imaging in patients with pulmonary arterial hypertension. Heart 2021; 107: 54-60
- 56 Kazimierczyk R, Szumowski P, Nekolla SG. et al. The impact of specific pulmonary arterial hypertension therapy on cardiac fluorodeoxyglucose distribution in PET/MRI hybrid imaging–follow-up study. EJNMMI Res 2023; 13: 20
- 57 Barber NJ, Ako EO, Kowalik GT. et al. MR augmented cardiopulmonary exercise testing—a novel approach to assessing cardiovascular function. Physiol Meas 2015; 36: N85-N94
- 58 Barber NJ, Ako EO, Kowalik GT. et al. Magnetic Resonance-Augmented Cardiopulmonary Exercise Testing: Comprehensively Assessing Exercise Intolerance in Children With Cardiovascular Disease. Circ Cardiovasc Imaging 2016; 9: e005282
- 59 Brown JT, Kotecha T, Steeden JA. et al. Reduced exercise capacity in patients with systemic sclerosis is associated with lower peak tissue oxygen extraction: a cardiovascular magnetic resonance-augmented cardiopulmonary exercise study. J Cardiovasc Magn Reson 2021; 23: 118
- 60 Rogers T, Ratnayaka K, Khan JM. et al. CMR fluoroscopy right heart catheterization for cardiac output and pulmonary vascular resistance: results in 102 patients. J Cardiovasc Magn Reson 2016; 19: 54
- 61 Alabed S, Uthoff J, Zhou S. et al. Machine learning cardiac-MRI features predict mortality in newly diagnosed pulmonary arterial hypertension. Eur Heart J Digit Health 2022; 3: 265-275
- 62 Swift AJ, Lu H, Uthoff J. et al. A machine learning cardiac magnetic resonance approach to extract disease features and automate pulmonary arterial hypertension diagnosis. Eur Heart J Cardiovasc Imaging 2021; 22: 236-245
- 63 Abdulaal L, Maiter A, Salehi M. et al. A systematic review of artificial intelligence tools for chronic pulmonary embolism on CT pulmonary angiography. Front Radiol 2024; 4: 1335349
- 64 Swift AJ, Dwivedi K, Johns C. et al. Diagnostic accuracy of CT pulmonary angiography in suspected pulmonary hypertension. Eur Radiol 2020; 30: 4918-4929
- 65 Dwivedi K, Sharkey M, Delaney L. et al. Improving Prognostication in Pulmonary Hypertension Using AI-quantified Fibrosis and Radiologic Severity Scoring at Baseline CT. Radiology 2024; 310: e231718
- 66 Sharkey MJ, Taylor JC, Alabed S. et al. Fully automatic cardiac four chamber and great vessel segmentation on CT pulmonary angiography using deep learning. Front Cardiovasc Med 2022; 9: 983859
- 67 Morris PD, Narracott A, Von Tengg-Kobligk H. et al. Computational fluid dynamics modelling in cardiovascular medicine. Heart 2016; 102: 18-28
- 68 Morris PD, Ryan D, Morton AC. et al. Virtual Fractional Flow Reserve From Coronary Angiography: Modeling the Significance of Coronary Lesions. JACC Cardiovasc Interv 2013; 6: 149-157
- 69 Van De Vosse FN, Stergiopulos N. Pulse Wave Propagation in the Arterial Tree. Annu Rev Fluid Mech 2011; 43: 467-499
- 70 Fevola E, Ballarin F, Jiménez-Juan L. et al. An optimal control approach to determine resistance-type boundary conditions from in-vivo data for cardiovascular simulations. Numer Methods Biomed Eng 2021; 37: e3516