Subscribe to RSS
DOI: 10.1055/a-2628-4859
Kinematische Ganganalyse beim Hund: Hält die moderne Ganganalyse Einzug in die tierärztliche Praxis?
Kinematic gait analysis in dogs: Is modern gait analysis finding its way into veterinary practice?Authors

Zusammenfassung
Computerisierte Ganganalyse ermöglicht eine objektive Untersuchung und Quantifizierung von Gangauffälligkeiten beim Hund und wird zur Diagnose von Lahmheiten sowie zur Therapieüberwachung eingesetzt. Die kinetische Ganganalyse untersucht die während der Bewegung auftretenden Kräfte, während die kinematische Ganganalyse die Bewegung von Körpern untersucht, ohne Kräfte zu berücksichtigen. Während erstere nur Rückschlüsse auf die Gesamtfunktion der Gliedmaße erlaubt, ermöglicht letztere auch die Bewegung einzelner Gelenke zu untersuchen und trägt zum Verständnis normaler und pathologischer Bewegungsmuster bei. Die kinematische Ganganalyse kann markergestützt oder markerlos erfolgen, wobei aktuell meist markergestützte Systeme genutzt werden. Während in der Humanmedizin künstliche Intelligenz (KI) bereits mit markerlosen Systemen kombiniert wird, steht diese Anwendung in der Veterinärmedizin noch am Anfang. Kinematische Systeme erfassen Bewegungen in 2 oder 3 Dimensionen: 3D-Systeme liefern die präzisesten Daten und analysieren Gelenkbewegungen in 6 Freiheitsgraden, sind jedoch aufgrund hoher Kosten und Komplexität vor allem in der Forschung verbreitet. 2D-Systeme sind durch Fortschritte in der Videotechnik kostengünstiger und einfacher anwendbar, erfassen jedoch nur Bewegungen in einer Ebene. Ein ideales computergestütztes Ganganalysesystem für Hunde, das kinematische Daten in Echtzeit visualisiert und auswertet, existiert bislang nicht – solche Systeme sind derzeit nur für kinetische Analysen verfügbar. Durch Fortschritte in der KI-basierten humanen Bewegungsanalyse wird erwartet, dass auch die canine kinematische Ganganalyse – unabhängig von der technischen Grundlage (z. B. optisch oder sensorbasiert) – künftig einfacher in der tierärztlichen Praxis einsetzbar wird. Ziel dieses Übersichtsartikels ist es, die Grundlagen der kinematischen Datenerfassung und- analyse beim Hund darzustellen, den aktuellen Forschungsstand zusammenzufassen und Unterschiede zwischen optischen Ganganalysesystemen aufzuzeigen.
Abstract
Computerized gait analysis enables objective assessment and quantification of gait disorders in dogs, aiding lameness diagnosis and treatment monitoring. Kinetic analysis examines the forces exerted during movement, whereas kinematic analysis focuses on the movement of body segments without considering forces. Kinetic gait analysis provides insights into overall limb function, whereas kinematic gait analysis allows examination of individual joint movements, enhancing the understanding of normal and altered joint motion. Kinematic gait analysis can be marker-based or markerless, though marker-based systems dominate clinical use. In human medicine, artificial intelligence (AI) is already integrated with markerless systems for kinematic gait analysis, while veterinary research is still emerging. Kinematic gait analysis can be two- and three-dimensional. Three-dimensional (3D) systems offer the highest accuracy, analyzing joint motion in six degrees of freedom, however their high cost and technical complexity currently limit their use to research. Two-dimensional (2D) systems, benefiting from video technology advances, are more affordable and user-friendly. However, these systems capture motion in a single plane only. To date, no ideal computerized gait analysis system exists for dogs that can visualize and analyze kinematic data in real time – such systems are currently available only for kinetic analysis. With AI-driven advances in human motion analysis, canine kinematic gait analysis, regardless of technology (e. g., optical or sensor-based), is expected to become significantly more accessible for veterinary practice. This review outlines the fundamentals of kinematic data acquisition in dogs, summarizes current research, and compares optical gait analysis systems.
Publication History
Received: 25 September 2024
Accepted: 16 May 2025
Article published online:
15 October 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 DeCamp CE. Kinetic and kinematic gait analysis and the assessment of lameness in the dog. Vet Clin North Am Small Anim Pract 1997; 27: 825-840
- 2 Dalin G, Jeffcott LB. Locomotion and gait analysis. Vet Clin North Am Equine Pract 1985; 1: 549-572
- 3 Off W, Matis U. Ganganalyse beim Hund. Teil 1: Dynamometrische und kinemetrische Messverfahren und ihre Anwendung beim Tetrapoden. Tierarztl Prax 1997; 25: 8-14
- 4 Bertram JE, Lee DV, Case HN. et al. Comparison of the trotting gaits of Labrador Retrievers and Greyhounds. Am J Vet Res 2000; 61: 832-838
- 5 Böddeker J, Drüen S, Meyer-Lindenberg A. et al. Computer-assisted gait analysis of the dog: comparison of two surgical techniques for the ruptured cranial cruciate ligament. Vet Comp Orthop Traumatol 2012; 25: 11-21
- 6 Gillette RL, Angle TC. Recent developments in canine locomotor analysis: a review. Vet J 2008; 178: 165-176
- 7 Jarvis SL, Worley DR, Hogy SM. et al. Kinematic and kinetic analysis of dogs during trotting after amputation of a thoracic limb. Am J Vet Res 2013; 74: 1155-1163
- 8 McLaughlin RM. Kinetic and kinematic gait analysis in dogs. Vet Clin North Am Small Anim Pract 2001; 31: 193-201
- 9 Holler PJ, Brazda V, Dal-Bianco B. et al. Kinematic motion analysis of the joints of the forelimbs and hind limbs of dogs during walking exercise regimens. Am J Vet Res 2010; 71: 734-740
- 10 Agostinho FS, Rahal SC, Miqueleto NS. et al. Kinematic analysis of Labrador Retrievers and Rottweilers trotting on a treadmill. Vet Comp Orthop Traumatol 2011; 24: 185-191
- 11 Caron A, Caley A, Farrell M. et al. Kinematic gait analysis of the canine thoracic limb using a six degrees of freedom marker set. Study in normal Labrador Retrievers and Labrador Retrievers with medial coronoid process disease. Vet Comp Orthop Traumatol 2014; 27: 461-469
- 12 Fu YC, Torres BT, Budsberg SC. Evaluation of a three-dimensional kinematic model for canine gait analysis. Am J Vet Res 2010; 71: 1118-1122
- 13 Goldner B, Fischer S, Nolte I. et al. Kinematic adaptions to induced short-term pelvic limb lameness in trotting dogs. BMC Veterinary Research 2018; 14: 183
- 14 Oh SE, Choi A, Mun JH. Prediction of ground reaction forces during gait based on kinematics and a neural network model. Journal of Biomechanics 2013; 46: 2372-2380
- 15 Shippen J, May B. A Kinematic Approach to Calculating Ground Reaction Forces in Dance. Journal of dance medicine & science : official publication of the International Association for Dance Medicine & Science 2012; 16: 39-43
- 16 Sandberg GS, Torres BT, Budsberg SC. Review of kinematic analysis in dogs. Veterinary Surgery 2020; 49: 1088-1098
- 17 Torres BT. Objective Gait Analysis. In Canine Lameness. Wiley-Blackwell; 2020: 15-30
- 18 Waxman AS, Robinson DA, Evans RB. et al. Relationship between objective and subjective assessment of limb function in normal dogs with an experimentally induced lameness. Vet Surg 2008; 37: 241-246
- 19 Quinn MM, Keuler NS, Lu Y. et al. Evaluation of agreement between numerical rating scales, visual analogue scoring scales, and force plate gait analysis in dogs. Vet Surg 2007; 36: 360-367
- 20 Voss K, Imhof J, Kaestner S. et al. Force plate gait analysis at the walk and trot in dogs with low-grade hindlimb lameness. Vet Comp Orthop Traumatol 2007; 20: 299-304
- 21 Conzemius MG, Evans RB. Caregiver placebo effect for dogs with lameness from osteoarthritis. J Am Vet Med Assoc 2012; 241: 1314-1319
- 22 Volz F, Eberle D, Kornmayer M. et al. Effect of intra-articular platelet-rich plasma or hyaluronic acid on limb function recovery in dogs with TPLO for cranial cruciate ligament rupture: a randomised controlled trial. Journal of Small Animal Practice 2024; 65: 223-233
- 23 Bruns Y, Schroers M, Steigmeier-Raith S. et al. Efficacy of a Single Injection of Stromal Vascular Fraction in Dogs with Elbow Osteoarthritis: A Clinical Prospective Study. Animals 2024; 14: 2803
- 24 Drüen S, Böddeker J, Meyer-Lindenberg A. et al. Computer-based gait analysis of dogs: evaluation of kinetic and kinematic parameters after cemented and cementless total hip replacement. Vet Comp Orthop Traumatol 2012; 25: 375-384
- 25 Warnock J, Duerr FM. Stifle Region. In Canine Lameness. 2020: 321-330
- 26 Torres BT. Gait Analysis. In Veterinary Surgery: Small Animal. 2nd. Aufl. 2018: 1385-1396
- 27 Duerr FM, Pauls A, Kawcak C. et al. Evaluation of inertial measurement units as a novel method for kinematic gait evaluation in dogs. Vet Comp Orthop Traumatol 2016; 29: 475-483
- 28 Winkler EV, Lauer SK, Steigmeier-Raith SI. et al. Accuracy of Kinovea-based kinematic gait analysis compared to a three-dimensional motion analysis system in healthy dogs. Am J Vet Res 2024; 1-11
- 29 Zelaya-Nunez CE, Graham DT, Seabolt RA. et al. Mobile Gait Analysis: Evaluating Phone-Based Applications for Kinematic Analysis in Dogs. VCOT Open 2023; 06: A012
- 30 Knights H, Williams J. The influence of three working harnesses on thoracic limb kinematics and stride length at walk in assistance dogs. Journal of Veterinary Behavior 2021; 45: 16-24
- 31 Kieves NR. Objective Gait Analysis: Review and Clinical Applications. Vet Clin North Am Small Anim Pract 2022; 52: 857-867
- 32 Couto PA, Filipe VM, Magalhães LG. et al. A comparison of two-dimensional and three-dimensional techniques for the determination of hindlimb kinematics during treadmill locomotion in rats following spinal cord injury. Journal of Neuroscience Methods 2008; 173: 193-200
- 33 Torres BT, Punke JP, Fu YC. et al. Comparison of canine stifle kinematic data collected with three different targeting models. Vet Surg 2010; 39: 504-512
- 34 Fischer MS, Lehmann SV, Andrada E. Three-dimensional kinematics of canine hind limbs: in vivo, biplanar, high-frequency fluoroscopic analysis of four breeds during walking and trotting. Sci Rep 2018; 8: 16982
- 35 Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 1983; 105: 136-144
- 36 Millis D, Levine D. Box 5-2 Types of Joints. In Canine Rehabilitation and Physical Therapy (Second Edition). St. Louis: W.B. Saunders; 2014
- 37 Kirtley C. Measurement of Gait Kinematics. In Clinical Gait Analysis: Theory and Practice. 1st. Aufl. Philadelphia, PA: Churchhill Livingstone; 2006: 39-51
- 38 Layer AF. Ganganalytische Untersuchung der Rückenbewegung von gesunden Hunden der Rassen Dackel und Labrador Retriever: lmu. 2012
- 39 Schikowski L, Eley N, Kelleners N. et al. Three-Dimensional Kinematic Motion of the Craniocervical Junction of Chihuahuas and Labrador Retrievers. Front Vet Sci 2021; 8: 709967
- 40 Bockstahler BA, Henninger W, Müller M. et al. Influence of borderline hip dysplasia on joint kinematics of clinically sound Belgian Shepherd dogs. Am J Vet Res 2007; 68: 271-276
- 41 Korvick DL, Pijanowski GJ, Schaeffer DJ. Three-dimensional kinematics of the intact and cranial cruciate ligament-deficient stifle of dogs. J Biomech 1994; 27: 77-87
- 42 Scataglini S, Abts E, Van Bocxlaer C. et al. Accuracy, Validity, and Reliability of Markerless Camera-Based 3D Motion Capture Systems versus Marker-Based 3D Motion Capture Systems in Gait Analysis: A Systematic Review and Meta-Analysis. Sensors 2024; 24: 3686
- 43 Ceseracciu E, Sawacha Z, Cobelli C. Comparison of Markerless and Marker-Based Motion Capture Technologies through Simultaneous Data Collection during Gait: Proof of Concept. PLOS ONE 2014; 9: e87640
- 44 Hottinger HA, DeCamp CE, Olivier NB. et al. Noninvasive kinematic analysis of the walk in healthy large-breed dogs. Am J Vet Res 1996; 57: 381-388
- 45 Andrada E, Reinhardt L, Lucas K. et al. Three-dimensional inverse dynamics of the forelimb of Beagles at a walk and trot. Am J Vet Res 2017; 78: 804-817
- 46 Bennett RL, DeCamp CE, Flo GL. et al. Kinematic gait analysis in dogs with hip dysplasia. Am J Vet Res 1996; 57: 966-971
- 47 DeCamp CE, Riggs CM, Olivier NB. et al. Kinematic evaluation of gait in dogs with cranial cruciate ligament rupture. Am J Vet Res 1996; 57: 120-126
- 48 DeCamp CE, Soutas-Little RW, Hauptman J. et al. Kinematic gait analysis of the trot in healthy greyhounds. Am J Vet Res 1993; 54: 627-634
- 49 Colborne GR, Innes JF, Comerford EJ. et al. Distribution of power across the hind limb joints in Labrador Retrievers and Greyhounds. Am J Vet Res 2005; 66: 1563-1571
- 50 Bennett D, Ogonda L, Elliott D. et al. Comparison of gait kinematics in patients receiving minimally invasive and traditional hip replacement surgery: A prospective blinded study. Gait & Posture 2006; 23: 374-382
- 51 Marsolais GS, McLean S, Derrick T. et al. Kinematic analysis of the hind limb during swimming and walking in healthy dogs and dogs with surgically corrected cranial cruciate ligament rupture. J Am Vet Med Assoc 2003; 222: 739-743
- 52 Schwencke M, Smolders LA, Bergknut N. et al. Soft tissue artifact in canine kinematic gait analysis. Vet Surg 2012; 41: 829-837
- 53 Bauman JM, Chang YH. High-speed X-ray video demonstrates significant skin movement errors with standard optical kinematics during rat locomotion. J Neurosci Methods 2010; 186: 18-24
- 54 Kim SY, Kim JY, Hayashi K. et al. Skin movement during the kinematic analysis of the canine pelvic limb. Vet Comp Orthop Traumatol 2011; 24: 326-332
- 55 Kim SY, Torres BT, Sandberg GS. et al. Effect of Limb Position at the Time of Skin Marker Application on Sagittal Plane Kinematics of the Dog. Vet Comp Orthop Traumatol 2017; 30: 438-443
- 56 Torres BT, Whitlock D, Reynolds LR. et al. The effect of marker location variability on noninvasive canine stifle kinematics. Vet Surg 2011; 40: 715-719
- 57 Torres BT, Gilbert PJ, Reynolds LR. et al. The Effect of Examiner Variability on Multiple Canine Stifle Kinematic Gait Collections in a 3-Dimensional Model. Vet Surg 2015; 44: 581-587
- 58 Torres BT, Fu YC, Sandberg GS. et al. Pelvic limb kinematics in the dog with and without a stifle orthosis. Vet Surg 2017; 46: 642-652
- 59 Ripic Z, Signorile JF, Best TM. et al. Validity of artificial intelligence-based markerless motion capture system for clinical gait analysis: Spatiotemporal results in healthy adults and adults with Parkinson's disease. J Biomech 2023; 155: 111645
- 60 Desmarais Y, Mottet D, Slangen P. et al. A review of 3D human pose estimation algorithms for markerless motion capture. Computer Vision and Image Understanding 2021; 212: 103275
- 61 Colyer SL, Evans M, Cosker DP. et al. A Review of the Evolution of Vision-Based Motion Analysis and the Integration of Advanced Computer Vision Methods Towards Developing a Markerless System. Sports Med Open 2018; 4: 24
- 62 Hayati H, Eager D, Walker P. The effects of surface compliance on greyhound galloping dynamics. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 2019; 233: 1033-1043
- 63 Appelgrein C, Glyde MR, Hosgood G. et al. Reduction of the A-frame angle of incline does not change the maximum carpal joint extension angle in agility dogs entering the A-frame. Veterinary and Comparative Orthopaedics and Traumatology 2018; 31: 077-082
- 64 Carter A, Boyd J, Williams E. Understanding the Impact of Scale Height on the Kinetics and Kinematics of Dogs in Working Trials. Frontiers in Veterinary Science 2022; 8
- 65 Schobesberger H, Peham C. Computerized detection of supporting forelimb lameness in the horse using an artificial neural network. Vet J 2002; 163: 77-84
- 66 Kaijima M, Foutz TL, McClendon RW. et al. Diagnosis of lameness in dogs by use of artificial neural networks and ground reaction forces obtained during gait analysis. Am J Vet Res 2012; 73: 973-978
- 67 Feuser AK, Gesell-May S, Müller T. et al. Artificial Intelligence for Lameness Detection in Horses-A Preliminary Study. Animals (Basel) 2022; 12
- 68 Park BH, Banks SA, Pozzi A. Quantifying meniscal kinematics in dogs. J Orthop Res 2018; 36: 1710-1716
- 69 Amit T, Gomberg BR, Milgram J. et al. Segmental inertial properties in dogs determined by magnetic resonance imaging. Vet J 2009; 182: 94-99
- 70 Racette M, Al saleh H, Waller KR. et al. 3D FSE Cube and VIPR-aTR 3.0 Tesla magnetic resonance imaging predicts canine cranial cruciate ligament structural properties. Vet J 2016; 209: 150-155
- 71 Tremolada G, Winter MD, Kim SE. et al. Validation of stress magnetic resonance imaging of the canine stifle joint with and without an intact cranial cruciate ligament. Am J Vet Res 2014; 75: 41-47
- 72 Srnec R, Horák Z, Sedláček R. et al. Comparison between the Range of Movement Canine Real Cervical Spine and Numerical Simulation – Computer Model Validation. Acta Chir Orthop Traumatol Cech 2017; 84: 133-137
- 73 Neville-Towle JD, Tan CJ, Parr WCH. et al. Three-dimensional kinematics of the canine carpal bones imaged with computed tomography after ex vivo axial limb loading and palmar ligament transection. Vet Surg 2018; 47: 861-871
- 74 Moore E, Kim S, Banks S. et al. Normal patellofemoral kinematic patterns during daily activities in dogs. BMC Veterinary Research 2016; 12
- 75 Lusetti F, Bonardi A, Eid C. et al. Pelvic limb alignment measured by computed tomography in purebred English Bulldogs with medial patellar luxation. Vet Comp Orthop Traumatol 2017; 30: 200-208
- 76 Kim J, Rietdyk S, Breur GJ. Comparison of two-dimensional and three-dimensional systems for kinematic analysis of the sagittal motion of canine hind limbs during walking. Am J Vet Res 2008; 69: 1116-1122
- 77 Diogo CC, Camassa JA, Fonseca B. et al. A Comparison of Two-Dimensional and Three-Dimensional Techniques for Kinematic Analysis of the Sagittal Motion of Sheep Hindlimbs During Walking on a Treadmill. Front Vet Sci 2021; 8: 545708
- 78 Atkins LT, James CR, Sizer PS. et al. Reliability and concurrent criterion validity of a novel technique for analyzing hip kinematics during running. Physiother Theory Pract 2014; 30: 210-217
- 79 Fisher CJ, Scott KC, Reiter HK. et al. Effects of a flotation vest and water flow rate on limb kinematics of Siberian Huskies swimming against a current. American Journal of Veterinary Research 2021; 82: 955-962
- 80 Klinhom S, Chaichit T, Nganvongpa K. A Comparative Study of Range of Motion of Forelimb and Hind Limb in Walk Pattern and Trot Pattern of Chihuahua Dogs Affected and Non-Affected with Patellar Luxation. Asian Journal of Animal and Veterinary Advances 2015; 10: 247-259
- 81 Kongsawasdi S, Machareonsap P, Thrawat N. Range of motion and joint angle in small breed dog during walking and swimming with and without life jacket. Veterinary Integrative. Sciences 2020; 18: 133-140
- 82 Harris EJ, Khoo I-H, Demircan E. A Survey of Human Gait-Based Artificial Intelligence Applications. Frontiers in Robotics and AI 2022; 8
- 83 Lyon M. The Dog in Action. Orange Judd Publishing Company; 1950
- 84 Brown CD B. Dog Locomotion and Gait Analysis. 1986
- 85 Schaefer SL, DeCamp CE, Hauptman JG. et al. Kinematic gait analysis of hind limb symmetry in dogs at the trot. Am J Vet Res 1998; 59: 680-685
- 86 Carr JG, Millis DL, Weng HY. Exercises in canine physical rehabilitation: range of motion of the forelimb during stair and ramp ascent. J Small Anim Pract 2013; 54: 409-413
- 87 Owen MR, Richards J, Dn C. et al. Kinematics of the elbow and stifle joints in Greyhounds during treadmill trotting – an investigation of familiarisation. Veterinary and Comparative Orthopaedics and Traumatology 2004; 3: 141-145
- 88 Poy NS, DeCamp CE, Bennett RL. et al. Additional kinematic variables to describe differences in the trot between clinically normal dogs and dogs with hip dysplasia. Am J Vet Res 2000; 61: 974-978
- 89 Nielsen C, Stover SM, Schulz KS. et al. Two-dimensional link-segment model of the forelimb of dogs at a walk. Am J Vet Res 2003; 64: 609-617
- 90 Off W, Matis U. Ganganalyse beim Hund. Teil 2: Aufbau eines Ganglabors und bewegungsanalytische Untersuchungen. Tierarztl Prax 1997; 25: 303-311
- 91 Lorke M, Willen M, Lucas K. et al. Comparative kinematic gait analysis in young and old Beagle dogs. J Vet Sci 2017; 18: 521-530
- 92 Budsberg SV, Reynolds M, Three L. dimensional non-invasive kinematics of the canine stifle. Vet Surg 1999; 387-388
- 93 Malek S, Moens NM, Monteith GJ. The precision and repeatability of a custom-made pointer device for determination of virtual landmarks in canine three-dimensional kinematics. Vet Comp Orthop Traumatol 2012; 25: 102-108
- 94 Fallahtafti F, Wurdeman SR, Yentes JM. Sampling rate influences the regularity analysis of temporal domain measures of walking more than spatial domain measures. Gait Posture 2021; 88: 216-220
- 95 Rumph PF, Steiss JE, Montgomery RD. Effects of selection and habituation on vertical ground reaction force in greyhounds. Am J Vet Res 1997; 58: 1206-1208
- 96 Conzemius MG, Torres BT, Muir P. et al. Best practices for measuring and reporting ground reaction forces in dogs. Vet Surg 2022; 51: 385-396
- 97 Keebaugh AE, Redman-Bentley D, Griffon DJ. Influence of leash side and handlers on pressure mat analysis of gait characteristics in small-breed dogs. J Am Vet Med Assoc 2015; 246: 1215-1221
- 98 Jevens DJ, Hauptman JG, DeCamp CE. et al. Contributions to variance in force-plate analysis of gait in dogs. Am J Vet Res 1993; 54: 612-615
- 99 Riggs CM, DeCamp CE, Soutas-Little RW. et al. Effects of subject velocity on force plate-measured ground reaction forces in healthy greyhounds at the trot. Am J Vet Res 1993; 54: 1523-1526
- 100 Colborne GR, Walker AM, Tattersall AJ. et al. Effect of trotting velocity on work patterns of the hind limbs of Greyhounds. Am J Vet Res 2006; 67: 1293-1298
- 101 Duerr FM. Subjective Gait Evaluation. In Canine Lameness. Wiley-Blackwell; 2020: 5-13
- 102 Millis D, Janas K. Forelimb Examination, Lameness Assessment, and Kinetic and Kinematic Gait Analysis. Vet Clin North Am Small Anim Pract 2021; 51: 235-251
- 103 Andrada E, Hildebrandt G, Witte H. et al. Positioning of pivot points in quadrupedal locomotion: limbs global dynamics in four different dog breeds. Frontiers in Bioengineering and Biotechnology 2023; 11
- 104 Budsberg SC, Rytz U, Johnston SA. Effects of Acceleration on Ground Reaction Forces Collected in Healthy Dogs at a Trot. Vet Comp Orthop Traumatol 1998; 11: 15-19
- 105 Hans EC, Zwarthoed B, Seliski J. et al. Variance associated with subject velocity and trial repetition during force platform gait analysis in a heterogeneous population of clinically normal dogs. Vet J 2014; 202: 498-502
- 106 Korvick DL, Pijanowski GJ, Schaeffer DJ. Three-dimensional kinematics of the intact and cranial cruciate ligament-deficient stifle of dogs. Journal of Biomechanics 1994; 27: 77-87
- 107 Budsberg SC, Jevens DJ, Brown J. et al. Evaluation of limb symmetry indices, using ground reaction forces in healthy dogs. Am J Vet Res 1993; 54: 1569-1574
- 108 Fanchon L, Grandjean D. Accuracy of asymmetry indices of ground reaction forces for diagnosis of hind limb lameness in dogs. Am J Vet Res 2007; 68: 1089-1094
- 109 Oosterlinck M, Bosmans T, Gasthuys F. et al. Accuracy of pressure plate kinetic asymmetry indices and their correlation with visual gait assessment scores in lame and nonlame dogs. Am J Vet Res 2011; 72: 820-825
- 110 Volstad NJ, Sandberg G, Robb S. et al. The evaluation of limb symmetry indices using ground reaction forces collected with one or two force plates in healthy dogs. Vet Comp Orthop Traumatol 2017; 30: 54-58
- 111 Pettit EM, Sandberg GS, Volstad NJ. et al. Evaluation of Ground Reaction Forces and Limb Symmetry Indices Using Ground Reaction Forces Collected with One or Two Plates in Dogs Exhibiting a Stifle Lameness. Vet Comp Orthop Traumatol 2020; 33: 398-401
- 112 Gillette RL, Zebas CJ. A two-dimensional analysis of limb symmetry in the trot of Labrador retrievers. J Am Anim Hosp Assoc 1999; 35: 515-520
- 113 Colborne GR. Are sound dogs mechanically symmetric at trot? No, actually. Vet Comp Orthop Traumatol 2008; 21: 294-301
- 114 Raith AK. Das ganganalytische Profil des Deutschen Schäferhundes − Eine Reevaluierung [Monographie]. München: Ludwig-Maximilians-Universität München; 2010. 139.
- 115 Pietsch S, Steigmeier-Raith S, Reese S. et al. Reliability of range-of-motion measurements of healthy dogs examined while walking on a treadmill. Am J Vet Res 2021; 82: 897-902
- 116 Pietsch S, Steigmeier-Raith S, Reese S. et al. Reliability of kinetic measurements of healthy dogs examined while walking on a treadmill. Am J Vet Res 2020; 81: 804-809