Subscribe to RSS
DOI: 10.1055/a-2630-1454
Catalytic C–C Bond Formation via Aromatic C–H Bond Cleavage Using Low-Valent Iron-Phosphine Complexes
Authors
Supported by: Core Research for Evolutional Science and Technology JPMJSP2123


Abstract
This article presents our findings on catalytic ortho-selective C–C bond formations through the cleavage of C–H bonds in aromatic ketones using low-valent iron-phosphine complexes. We describe four types of catalytic transformations that convert C–H bonds into C–C bonds. Reactions involving terminal alkenes, such as vinyl and allylsilanes, aliphatic alkenes, styrenes, vinyl ethers, and enamines, yield the corresponding linear alkylation products. The coupling reaction using methylenecyclopropanes yields homoallylation products via alkene 1,2-insertion, followed by β-carbon elimination. The C–H alkenylation can be achieved by the reaction with internal alkynes. The use of 1,n-enynes (where n = 6, 7) as coupling partners for the C–H bond led to hydroarylative enyne cyclization products. The results of deuterium-labeling experiments of these reactions are also discussed.
Keywords
Low-valent iron-phosphine complex - C–H activation - C–C bond formation - Aromatic ketone - Alkenes - Alkynes - 1,n-EnynesPublication History
Received: 30 April 2025
Accepted after revision: 06 June 2025
Article published online:
24 July 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Suzuki A. Angew Chem Int Ed 2011; 50: 6722
- 1b Negishi E. Angew Chem Int Ed 2011; 50: 6738
- 1c Magano J, Dunetz JR. Chem Rev 2011; 111: 2177
- 1d Jana R, Pathak TP, Sigman MS. Chem Rev 2011; 111: 1417
- 1e Campeau L-C, Hazari N. Organometallics 2019; 38: 3
- 1f Docherty JH, Lister TM, Mcarthur G. et al. Chem Rev 2023; 123: 7692
- 2a Rej S, Ano Y, Chatani N. Chem Rev 2020; 120: 1788
- 2b Zhao Q, Meng G, Nolan SP, Szostak M. Chem Rev 2020; 120: 1981
- 2c Liu B, Romine AM, Fubel CZ, Engle KM, Shi B-F. Chem Rev 2021; 121: 14957
- 2d Dalton T, Faber T, Glorius F. ACS Cent Sci 2021; 7: 245
- 2e Guillemard L, Kaplaneris N, Ackermann L, Johansson MJ. Nat Rev Chem 2021; 5: 522
- 2f Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Chem Rev 2022; 122: 5682
- 2g Yu IF, Wilson JW, Hartwig JF. Chem Rev 2023; 123: 11619
- 2h Sinha SK, Ghosh P, Jain S. et al. Chem Soc Rev 2023; 52: 7461
- 2i Wu K, Lam N, Strassfeld DA. et al. Angew Chem Int Ed 2024; 63: e202400509
- 2j Dey J, van Gemmeren M. Synlett 2024; 35: 2191
- 2k Chen D, Dong D-Q, Qiu Z-X. et al. Org Chem 2025; 28: e202401177
- 3a Murai S, Kakiuchi F, Sekine S. et al. Nature 1993; 366: 529
- 3b Kakiuchi F, Sekine S, Tanaka Y. et al. Bull Chem Soc Jpn 1995; 68: 62
- 4a Su B, Cao Z-C, Shi Z-J. Acc Chem Res 2015; 48: 886
- 4b Pototschnig G, Maulide N, Schnürch M. Chem Eur J 2017; 23: 9206
- 4c Cera G, Ackermann L. Top Curr Chem 2016; 374: 57
- 4d Shang R, Ilies L, Nakamura E. Chem Rev 2017; 117: 9086
- 4e Yoshikai N. Isr J Chem 2017; 57: 1117
- 4f Liu T, Wang C. Synlett 2021; 32: 1323
- 4g Sharma R, Pandey S, Mohit M, Rawat DS. Tetrahedron 2025; 171: 134416
- 4h Gao K, Yoshikai N. Acc Chem Res 2014; 47: 1208
- 4i Moselage M, Li J, Ackermann L. ACS Catal 2016; 6: 498
- 4j Garai B, Das A, Kumar DV, Sundararaju B. Chem Commun 2024; 60: 3354
- 4k Yao Q-J, Shi B-F. Acc Chem Res 2025; 58: 971
- 4l Khake SM, Chatani N. Trends Chem 2019; 1: 524
- 4m Khake SM, Chatani N. Chem 2020; 6: 1056
- 4n Johnson CE, Li S, Arora R, Mirabi B, Lautens M. Synlett 2024; 35: 851
- 4o Guo X-X, Gu D-W, Wu Z, Zhang W. Chem Rev 2015; 115: 1622
- 5a Norinder J, Matsumoto A, Yoshikai N, Nakamura E. J Am Chem Soc 2008; 130: 5858
- 5b Yoshikai N, Matsumoto A, Norinder J, Nakamura E. Angew Chem Int Ed 2009; 48: 2925
- 5c Ilies L, Asako S, Nakamura E. J Am Chem Soc 2011; 133: 7672
- 5d Ilies L, Kobayashi M, Matsumoto A, Yoshikai N, Nakamura E. Adv Synth Catal 2012; 354: 593
- 5e Ilies L, Konno E, Chen Q, Nakamura E. Asian J Org Chem 2012; 1: 142
- 5f Shang R, Ilies L, Matsumoto A, Nakamura E. J Am Chem Soc 2013; 135: 6030
- 5g Asako S, Ilies L, Nakamura E. J Am Chem Soc 2013; 135: 17755
- 5h Matsubara T, Asako S, Ilies L, Nakamura E. J Am Chem Soc 2014; 136: 646
- 5i Ilies L, Matsubara T, Ichikawa S, Asako S, Nakamura E. J Am Chem Soc 2014; 136: 13126
- 5j Shang R, Ilies L, Asako S, Nakamura E. J Am Chem Soc 2014; 136: 14349
- 5k Asako S, Norinder J, Ilies L, Yoshikai N, Nakamura E. Adv Synth Catal 2014; 356: 1481
- 5l Ilies L, Ichikawa S, Asako S, Matsubara T, Nakamura E. Adv Synth Catal 2015; 357: 2175
- 5m Shang R, Ilies L, Nakamura E. J Am Chem Soc 2015; 137: 7660
- 5n Matsubara T, Ilies L, Nakamura E. Chem Asian J 2016; 11: 380
- 5o Shang R, Ilies L, Nakamura E. J Am Chem Soc 2016; 138: 10132
- 5p Ilies L, Itabashi Y, Shang R, Nakamura E. ACS Catal 2017; 7: 89
- 6 Jones WD, Foster GP, Putinas JM. J Am Chem Soc 1987; 109: 5047
- 7 Jia T, Zhao C, He R, Chen H, Wang C. Angew Chem Int Ed 2016; 55: 5268
- 8 Bagga MM, Pauson PL, Preston FJ, Reed RI. Chem Commun 1965; 543
- 9a Klein H-F, Camadanli S, Beck R, Leukel D, Flörke U. Angew Chem Int Ed 2005; 44: 975
- 9b Camadanli S, Beck R, Flörke U, Klein H-F. Organometallics 2009; 28: 2300
- 9c Xu X, Jia J, Sun H. et al. Dalton Trans 2013; 42: 3417
- 9d Zuo Z, Sun H, Wang L, Li X. Dalton Trans 2014; 43: 11716
- 9e Wang L, Sun H, Li X. Eur J Inorg Chem 2015; 2015: 2732
- 9f Zheng T, Li J, Zhang S. et al. Organometallics 2016; 35: 3538
- 10 Beck R, Camadanli S, Flörke U, Klein H-F. J Organomet Chem 2015; 778: 47
- 11 Hata G, Kondo H, Miyake A. J Am Chem Soc 1968; 90: 2278
- 12 Baker MV, Field LD. J Am Chem Soc 1986; 108: 7436
- 13 Tolman CA, Ittel SD, English AD, Jesson JP. J Am Chem Soc 1978; 100: 4080
- 14 Antberg M, Dahlenburg L. Angew Chem, Int Ed Engl 1986; 25: 260
- 15 Xu W, Pek JH, Yoshikai N. Asian J Org Chem 2018; 7: 1351
- 16 Dombray T, Werncke CG, Jiang S. et al. J Am Chem Soc 2015; 137: 4062
- 17a Britton L, Docherty JH, Dominey AP, Thomas SP. Molecules 2020; 25: 905
- 17b Britton L, Docherty JH, Nichol GS, Dominey AP, Thomas SP. Chin J Chem 2022; 40: 2875
- 18 Kimura N, Kochi T, Kakiuchi F. J Am Chem Soc 2017; 139: 14849
- 19a Yang L, Huang H. Chem Rev 2015; 115: 3468
- 19b Inoue M, Tsurugi H, Mashima K. Coord Chem Rev 2022; 473: 214810
- 19c Mandal R, Garai B, Sundararaju B. ACS Catal 2022; 12: 3452
- 19d Thombal RS, Rubio PYM, Lee D, Maiti D, Lee YR. ACS Catal 2022; 12: 5217
- 19e Docherty JH, Lister TM, Mcarthur G. et al. Chem Rev 2023; 123: 7692
- 20a Ebe Y, Nishimura T. J Am Chem Soc 2015; 137: 5899
- 20b Hatano M, Ebe Y, Nishimura T, Yorimitsu H. J Am Chem Soc 2016; 138: 4010
- 20c Yamauchi D, Nishimura T, Yorimitsu H. Chem Commun 2017; 53: 2760
- 21 Lenges CP, Brookhart M. J Am Chem Soc 1999; 121: 6616
- 22 Kimura N, Kochi T, Kakiuchi F. Asian J Org Chem 2019; 8: 1115
- 23a Gao K, Yoshikai N. Angew Chem Int Ed 2011; 50: 6888
- 23b Xu W, Yoshikai N. Angew Chem Int Ed 2016; 55: 12731
- 24 Kakiuchi F, Kochi T, Mizushima E, Murai S. J Am Chem Soc 2010; 132: 17741
- 25 Kimura N, Katta S, Kitazawa Y, Kochi T, Kakiuchi F. Synthesis 2021; 53: 3383
- 26 Kimura N, Katta S, Kitazawa Y, Kochi T, Kakiuchi F. J Am Chem Soc 2021; 143: 4543
- 27a Kozhushkov SI, Yufit DS, Ackermann L. Org Lett 2008; 10: 3409
- 27b Ackermann L, Kozhushkov SI, Yufit DS. Chem Eur J 2012; 18: 12068
- 27c Schinkel M, Wallbaum J, Kozhushkov SI, Marek I, Ackermann L. Org Lett 2013; 15: 4482
- 28a Foerstner J, Kozhushkov S, Binger P. et al. Chem Commun 1998; 239
- 28b Kozhushkov SI, Foerstner J, Kakoschke A. et al. Chem Eur J 2006; 12: 5642
- 28c Hoyte SA, Spencer JL. Organometallics 2011; 30: 5415
- 29 Kakiuchi F, Yamamoto Y, Chatani N, Murai S. Chem Lett 1995; 24: 681
- 30a Boyarskiy VP, Ryabukhin DD, Bokach NA, Vasilyev AV. Chem Rev 2016; 116: 5894
- 30b Petrini M. Chem Eur J 2017; 23: 16115
- 30c Hu Y, Wang C. ChemCatChem 2019; 11: 1167
- 30d Nishii Y, Miura M. ACS Catal 2020; 10: 9747
- 30e Chen D, Dong D-Q, Qiu Z-X. et al. Eur J Org Chem 2025; 28: e202401177
- 30f Fernández DF, Mascareñas JL, López F. Chem Soc Rev 2020; 49: 7378
- 30g Thowfik S, Afsina CMA, Anilkumar G. RSC Adv 2023; 13: 6246
- 31 Wong MY, Yamakawa T, Yoshikai N. Org Lett 2015; 17: 442
- 32 Messinis AM, von Münchow T, Surke M, Ackermann L. Nat Catal 2024; 7: 273
- 33 Matsubara T, Ilies L, Nakamura E. Chem Asian J 2016; 11: 380
- 34 Nagamoto M, Fukuda J, Hatano M, Yorimitsu H, Nishimura T. Org Lett 2017; 19: 5952
- 35 Jia T, Zhao C, He R, Chen H, Wang C. Angew Chem Int Ed 2016; 55: 5268
- 36a Cera G, Haven T, Ackermann L. Chem Commun 2017; 53: 6460
- 36b Mo J, Müller T, Oliveira JCA, Demeshko S, Meyer F, Ackermann L. Angew Chem Int Ed 2019; 58: 12874
- 37 Kitazawa Y, Kochi T, Kakiuchi F. J Org Chem 2023; 88: 1890
- 38 Kato Y, Yoshino T, Matsunaga S. ACS Catal 2023; 13: 4552
- 39a Xi T, Chen X, Zhang H, Lu Z. Synthesis 2016; 48: 2837
- 39b Guo J, Cheng Z, Chen J, Chen X, Lu Z. Acc Chem Res 2021; 54: 2701
- 40 Kitazawa Y, Kochi T, Kakiuchi F. Tetrahedron Lett 2025; 155: 155409