Subscribe to RSS

DOI: 10.1055/a-2646-0474
Bio-based Green Solvents in Organic Synthesis. An Updated Review
Supported by: Conselho Nacional de Desenvolvimento Científico e Tecnológico
Supported by: Financiadora de Estudos e Projetos
Supported by: Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul
Supported by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior 001
Funding Information This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. FAPERGS, CNPq, and FINEP are acknowledged for the financial support. CNPq is also acknowledged for the Fellowship of EJL.

Abstract
Solvents are essential for chemical reactions, formulations, and purification, with major use in paints, coatings, and pharmaceuticals. Global demand for solvents is expected to exceed 32 million metric tons by 2026. Solvents facilitate reactions, stabilize catalysts, assist in purification steps, and aid in the stability of reaction intermediates and transition states, which are crucial to the success of the chemical reaction. However, most of the solvents are petroleum-based, toxic, and environmentally harmful. The growing use of industrial solvents exacerbates the problems of waste and pollution. Therefore, there is an urgent need for alternative and sustainable solvents to replace current fossil-based ones. Green chemistry principles advocate for safer, renewable solvents to reduce environmental and health risks. The Sustainable Development Goals (SDGs) further emphasize clean water, innovation, and climate action. In this sense, bio-based solvents derived from renewable biomass feedstock are a promising alternative to petroleum-based solvents. While ethanol is widely used, newer options like carbohydrate-based solvents, terpenes, and natural deep eutectic solvents (NaDESs) are gaining attention. Other solvents, such as vegetable and animal oils and their derivatives, will not be discussed here, given that their benefits are limited and also that there is a scarcity of relevant literature. This review explores advancements made with regard to bio-based solvents over the past 5 years (from 2019 to the present). Over 70 studies are presented in this review regarding the use of bio-based solvents, highlighting their potential to replace conventional fossil-based ones, such as dichloromethane and toluene.
Publication History
Received: 28 April 2025
Accepted after revision: 26 June 2025
Accepted Manuscript online:
01 July 2025
Article published online:
06 August 2025
© 2025. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
Gabriela T. Quadros, Livia C. L. Valente, Laura Abenante, Thiago Barcellos, Daniela Hartwig, Eder J. Lenardão. Bio-based Green Solvents in Organic Synthesis. An Updated Review. Sustainability & Circularity NOW 2025; 02: a26460474.
DOI: 10.1055/a-2646-0474
-
References
- 1
Pilon L,
Day D,
Maslen H.
et al.
Green Chem 2024; 26: 9697
MissingFormLabel
- 2a Global solvents market to reach 32.7 million metric tons by the year 2026. GlobeNewswire:
March 29, 2022. Source: https://www.globenewswire.com/news-release/2022/03/29/2411908/0/en/GlobalSolvents-Market-to-Reach-32-7-Million-Metric-Tons-by-the-Year-2026.html (Accessed on: 23 February 2025)
MissingFormLabel
- 2b Solvents Market Size, Share & Industry Analysis, By Product Type (Alcohols, Ketones,
Esters, and Others), Application (Paints & Coatings, Printing Inks, Industrial Cleaning,
Adhesives, and Others), and Regional Forecast, 2024–2032. Source: https://www.fortunebusinessinsights.com/industrial-solvents-market-102135 (Accessed on: 09 April 2025)
MissingFormLabel
- 3
Slakman BL,
West RH.
J Phys Org Chem 2019; 32: e3904
MissingFormLabel
- 4
Winterton N.
Clean Technol Environ Policy 2021; 23: 2499
MissingFormLabel
- 5
Anastas PT,
Warner JC.
Green Chemistry: Theory and Practice. New York: Oxford University Press; 1998
MissingFormLabel
- 6 United Nations. Sustainable Development Goals; United Nations, https://sdgs.un.org/goals (Accessed on: 27 February 2025)
MissingFormLabel
- 7
Simon M-O,
Li C-J.
Chem Soc Rev 2012; 41: 1415
MissingFormLabel
- 8
Butler RN,
Coyne AG.
Chem Rev 2010; 110: 6302
MissingFormLabel
- 9
Blackmond DG,
Armstrong A,
Coombe V,
Wells A.
Angew Chem, Int Ed 2007; 46: 3798
MissingFormLabel
- 10
Varma RS.
ACS Sustainable Chem Eng 2016; 4: 5866
MissingFormLabel
- 11
Simon M-O,
Li C-J.
Chem Soc Rev 2012; 41: 1415
MissingFormLabel
- 12a
Poonam, Geetanjali,
Singh R.
Applications of ionic liquids in organic synthesis. In Applications of Nanotechnology
for Green Synthesis.
Inamuddin A,
Asiri A.
eds Nanotechnology in the Life Sciences. Cham: Springer; 2020: 45-67
MissingFormLabel
- 12b
Qureshi ZS,
Deshmukh KM,
Bhanage BM.
Clean Technol Environ Policy 2014; 16: 1487
MissingFormLabel
- 13a
Heidari S.
Haghniaz R.
The Potential Use of Supercritical CO2 as a Sustainable Solvent in Biocatalytic Reactions. In Green Sustainable Process
for Chemical and Environmental Engineering and Science.
Inamuddin A,
Boddula R,
Ahamed MI,
Asiri AM.
eds Elsevier; 2021: 325-343
MissingFormLabel
- 13b
Wu T,
Han B.
Supercritical Carbon Dioxide (CO2) as Green Solvent. In Green Chemistry and Chemical Engineering.
Han B,
Wu T.
eds. Encyclopedia of Sustainability Science and Technology Series New York, NY: Springer; 2019
MissingFormLabel
- 14a
Verma S,
Saini K,
Maken S.
J Mol Liq 2024; 393: 123605
MissingFormLabel
- 14b
Smith EL,
Abbott AP,
Ryder KS.
Chem Rev 2014; 114: 11060
MissingFormLabel
- 15a
Curran DP.
Pure Appl Chem 2000; 72: 1649
MissingFormLabel
- 15b
Gladysz JA,
Curran DP,
Horváth IT.
eds Handbook of Fluorous Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA; 2004
MissingFormLabel
- 16a
Soni J,
Sahiba N,
Sethiya A,
Agarwal S.
J Mol Liq 2020; 315: 113766
MissingFormLabel
- 16b
Chen J,
Spear SK,
Huddleston JG,
Rogers RD.
Green Chem 2005; 7: 64
MissingFormLabel
- 17a
Capello C,
Fischer U,
Hungerbühler K.
Green Chem 2007; 9: 927
MissingFormLabel
- 17b
Häckl K,
Kunz W.
C R Chim 2018; 21: 572
MissingFormLabel
- 18
Wu X-F,
Wang F,
Yin Z,
He L-n.
eds Green Solvents in Organic Synthesis. Weinheim: Wiley-VCH GmbH; 2024
MissingFormLabel
- 19
Yi W-B,
Gao X,
Zhang W.
Biorenewable Solvents for Organic Synthesis. Cham, Switzerland; Springer Nature: 2024
MissingFormLabel
- 20
Wittcoff HA,
Reuben BG,
Plotkin JS.
Industrial Organic Chemicals. New York: John Wiley & Sons; 2004: 136
MissingFormLabel
- 21a
Nazaré de Oliveira A,
Melchiorre M,
Farias da Costa AA.
et al.
Sustainable Chem Pharm 2024; 41: 101656
MissingFormLabel
- 21b
Narasimhamurthy KH,
Joy MN,
Sajith AM.
et al.
Lett Org Chem 2023; 20: 945
MissingFormLabel
- 21c
Ravichandiran P,
Gu Y.
Glycerol as eco-efficient solvent for organic transformations. In Bio-Based Solvents.
Jérôme F,
Luque R.
eds Chennai, India: John Wiley & Sons Ltd.; 2017
MissingFormLabel
- 21d
Nebra N,
García-Álvarez J.
Molecules 2020; 25: 2015
MissingFormLabel
- 22
Jordan A,
Hall JGC,
Thorp RL,
Sneddon FH.
Chem Rev 2022; 122: 6749
MissingFormLabel
- 23
Gundekari S,
Karmee KS.
Molecules 2024; 29: 242
MissingFormLabel
- 24
Bousfield TW,
Pearce KPR,
Nyamini SB,
Angelis-Dimakis A,
Camp JE.
Green Chem 2019; 21: 3675
MissingFormLabel
- 25
Tamargo RJI,
Rubio PYM,
Mohandoss S,
Shim J,
Lee YR.
ChemSusChem 2021; 14: 2133
MissingFormLabel
- 26
Webb DA,
Alsudani Z,
Xu G,
Gao P,
Arnold LA.
RSC Sustainability 2023; 1: 1522
MissingFormLabel
- 27
Stini N,
Gkizis P,
Kokotos C.
Org Biomol Chem 2023; 21: 351
MissingFormLabel
- 28
Citarella A,
Cavinato M,
Amenta A.
et al.
Eur J Org Chem 2024; 27: e202301305
MissingFormLabel
- 29
Tian C,
Dhawa U,
Struwe J,
Ackermann L.
Chin J Chem 2019; 37: 552
MissingFormLabel
- 30
Eliasson SHH,
Chatterjee A,
Occhipinti G,
Jensen VR.
ACS Sustainable Chem Eng 2019; 7: 4903
MissingFormLabel
- 31
Tabasso S,
Gaudino EC,
Acciardo E,
Manzoli M,
Bonelli B,
Cravotto G.
Front Chem 2020; 8: 253
MissingFormLabel
- 32
Tabasso S,
Calcio Gaudino E,
Rinaldi L,
Ledoux A,
Larini P,
Cravotto G.
N J Chem 2017; 41: 9210
MissingFormLabel
- 33
Tukacs JM,
Marton B,
Albert E,
Tóth I,
Mika LT.
J Organometall Chem 2020; 923: 121407
MissingFormLabel
- 34
Tóth I,
Tukacs JM,
Mika LT.
ChemCatChem 2023; 15: e20220148
MissingFormLabel
- 35
Xu M,
Zhang K,
Zhang J.
Mendeleev Commun 2022; 32: 397
MissingFormLabel
- 36
Anastasiou I,
Velthoven NV,
Tomarelli E.
et al.
ChemSusChem 2020; 13: 2786
MissingFormLabel
- 37
Anastasiou I,
Ferlin F,
Viteritti O,
Santoro S,
Vaccaro L.
Mol Catal 2021; 513: 1117877
MissingFormLabel
- 38
Ferlin F,
Anastasiou I,
Carpisassi L,
Vaccaro L.
Green Chem 2021; 23: 6576
MissingFormLabel
- 39
Valentini F,
Erasmo DB,
Ciani M,
Chen S,
Gu Y,
Vaccaro L.
Green Chem 2024; 26: 4871
MissingFormLabel
- 40
Mu XY,
Wang ZJ,
Feng B,
Xu L,
Gao LX,
Satheeshkuma R.
RSC Adv 2021; 11: 3216
MissingFormLabel
- 41
Wang L,
Jiang K,
Zhang N,
Zhang Z,
Asian J.
Org Chem 2021; 10: 1671
MissingFormLabel
- 42
Jiang KC,
Wang L,
Chen Q,
He MY,
Shen MG,
Zhang ZH.
Synth Commun 2021; 51: 94
MissingFormLabel
- 43
Qiu B,
Shi J,
Hu W,
Wang Y,
Zhang D,
Chu H.
Energy 2024; 294: 130774
MissingFormLabel
- 44
Singh LS,
Kant K,
Banerjee S.
et al.
Polycycl Aromat Compd 2024; 44: 4832
MissingFormLabel
- 45
Faria CA,
Oliveira BCK,
Monteiro CA,
Santos NE,
Gusevskaya VE.
Catal Today 2020; 344: 24
MissingFormLabel
- 46
Hao W,
Xu Z,
Zebiao Z,
Cai M.
J Org Chem 2020; 85: 8522
MissingFormLabel
- 47
Ismael A,
Gevorgyan A,
Skrydstrup T,
Bayer A.
Org Process Res Dev 2020; 24: 2665
MissingFormLabel
- 48
Meninno S,
Carrat M,
Overgaard J,
Lattanzi A.
Chem – Eur J 2021; 27: 4573
MissingFormLabel
- 49
Uzunlu N,
Pongrácz P,
Kollár L,
Takács A.
Molecules 2023; 28: 442
MissingFormLabel
- 50
Su M,
Huang X,
Lei C,
Jin J.
Org Lett 2022; 24: 354
MissingFormLabel
- 51
Breitmaier E.
Terpenes: Importance, General Structure, and Biosynthesis, v. 1. Weinheim.: Wiley-VCH
Verlag GmbH & Co. KGaA; 2006: 1-3
MissingFormLabel
- 52
Mahato N,
Sharma K,
Koteswararao R,
Sinha M,
Baral E,
Cho MH.
Crit Rev Food Sci Nutr 2019; 59: 611
MissingFormLabel
- 53
Eggersdorfer M.
Terpenes. Ullmann’s Encyclopedia of Industrial Chemistry, v. 36. Weinheim.: Wiley-VCH
Verlag GmbH & Co. KGaA; 2012: 29-45
MissingFormLabel
- 54
Campos JF,
Scherrmann M-C,
Berteina-Raboin S.
Green Chem 2019; 21: 1531
MissingFormLabel
- 55
Campos JF,
Berteina-Raboin S.
Catalysis 2019; 9: 840
MissingFormLabel
- 56
Campos JF,
Berteina-Raboin S.
Catal Today 2020; 358: 138
MissingFormLabel
- 57
Campos JF,
Pacheco-Benichou A,
Fruit C,
Besson T,
Berteina-Raboin S.
Synthesis 2020; 52: 3071
MissingFormLabel
- 58
Campos JF,
Ferreira V,
Berteina-Raboin S.
Catalysts 2021; 11: 222
MissingFormLabel
- 59
Messire G,
Adolf C,
Raboin-Berteina S.
Chem – Eur J 2024; 30: e202402136
MissingFormLabel
- 60
Dave AY,
Mishra A,
Talukdar M,
Begari E.
ChemistrySelect 2022; 7: e202200954
MissingFormLabel
- 61
Kundu T,
Mitra B,
Ghosh P.
Synth Commun 2023; 53: 779
MissingFormLabel
- 62
Nagata Y,
Takeda R,
Suginome M.
ACS Cent Sci 2019; 5: 1235
MissingFormLabel
- 63
Liu M-M,
Mu X-Y,
Yu L-J,
Milaneh S,
Zhang C,
Wang W-L.
Synth Commun 2023; 53: 1981
MissingFormLabel
- 64
Xu L,
Mu X,
Liu M.
et al.
Chin Chem Lett 2023; 34: 108063
MissingFormLabel
- 65
Ye L,
Thompson BC.
ACS Macro Lett 2021; 10: 714
MissingFormLabel
- 66
Lei P,
Mu Y,
Wang Y.
et al.
ACS Sustainable Chem Eng 2021; 9: 552
MissingFormLabel
- 67
Messire G,
Ferreira V,
Caillet E,
Bodin L,
Auville A,
Berteina-Raboin S.
Molecules 2023; 28: 6924
MissingFormLabel
- 68
Dargo G,
Kis D,
Gede M,
Kumar S,
Kupai J,
Szekely G.
Chem Eng J 2023; 471: 144365
MissingFormLabel
- 69
Abbott PA,
Capper G,
Davies DL,
Rasheed RK,
Tambyrajah V.
Chem Commun 2003; 70
MissingFormLabel
- 70
Smith EL,
Abbott PA,
Ryder SK.
Chem Rev 2014; 114: 11060
MissingFormLabel
- 71
Brahma S,
Gardas RL.
History and development of ionic liquids. In Handbook of Ionic Liquids: Fundamentals,
Applications, and Sustainability.
Singh P,
Rajkhowa S,
Sen A,
Sarma J.
eds Straive, Chennai, India: Wiley; 2023
MissingFormLabel
- 72
Choi YH,
van Spronsen J,
Dai Y.
et al.
Plant Physiol 2011; 156: 1701
MissingFormLabel
- 73
Dai Y,
van Spronsen J,
Witkamp G-J,
Verpoorte R,
Choi YH.
Anal Chim Acta 2013; 766: 61
MissingFormLabel
- 74
Chevé-Kools E,
Choi YH,
Roullier C,
Ruprich-Robert G,
Grougnet R,
Chapeland-Leclerc F,
Hollmann R.
Green Chem. 2025
MissingFormLabel
- 75
Karadendrou M-A,
Kostopoulou I,
Kakokefalou V,
Tzani A,
Detsi A.
Catalysts 2022; 12: 249
MissingFormLabel
- 76
Paparella AN,
Messa F,
Dilauro G,
Troisi L,
Perrone S,
Salomone A.
ChemistrySelect 2022; 7: e202203438
MissingFormLabel
- 77
Thiery E,
Delaye P-O,
Thibonnet J,
Boudesocque-Delaye L.
Eur J Org Chem 2023; 26: e202300727
MissingFormLabel
- 78
Tabasso S,
Moro R,
Gaudino EC,
Bruschetta C,
Cravotto G.
ACS Sustainable Chem Eng 2024; 12: 13810
MissingFormLabel
- 79
Khoshdel MA,
Mazloumi M,
Zabihzadeh M,
Shirini F.
Polycycl Aromat Compd 2024; 44: 4440
MissingFormLabel
- 80
Zadem A,
Cheraiet Z,
Chahra B-H.
Polycycl Aromat Compd 2024; 44: 5188
MissingFormLabel
- 81
Giofrè SV,
Tiecco M,
Ferlazzo A.
et al.
Eur J Org Chem 2021; 2021: 4777
MissingFormLabel
- 82
Lupidi G,
Palmieri A,
Petrini M.
Green Chem 2022; 24: 3629
MissingFormLabel
- 83
Das A,
Dey S,
Yadav RN.
et al.
ChemistrySelect 2023; 8: e202204651
MissingFormLabel
- 84
Komar M,
Rastija V,
Bĕslo D,
Molnar M.
J Mol Struct 2024; 1304: 137725
MissingFormLabel
- 85
Hosseinzadeh R,
Zarei S,
Valipour Z,
Malek B.
Heliyon 2024; 10: e37170
MissingFormLabel
- 86
Zuo M,
Wang X,
Jia W,
Zhu Y,
Zeng X,
Lin L.
Fuel 2022; 326: 125062
MissingFormLabel
- 87
Zuo M,
Che W,
Jia W,
Zhou Z,
Zeng X,
Lin L.
Ind Crops Prod 2023; 194: 116354
MissingFormLabel
- 88
Zhao J,
Guo Z,
Pedersen CM.
et al.
J Mol Liq 2024; 413: 126006
MissingFormLabel
- 89
Cseri L,
Kumar S,
Palchuber P,
Szekely G.
ACS Sustainable Chem Eng 2023; 11: 5696
MissingFormLabel