RSS-Feed abonnieren
DOI: 10.1055/a-2654-6206
Radiologische Aspekte der Lungenvolumenreduktionschirurgie
Radiological Aspects of Surgery to Reduce Lung Volume
Zusammenfassung
Wenn die konservative Therapie einer COPD mit Lungenemphysem ausgereizt ist und eine Lungentransplantation nicht infrage kommt, kann eine Reduktion des Lungenvolumens der nächste Therapieschritt sein. Lungenvolumenreduktionschirurgie (Lung Volume Reduction Surgery, LVRS) verwendet unterschiedliche Techniken, u. a. das sog. „apikale Shaving“, die gezielte Resektion einer Targetzone und die vollständige Lappenresektion. Neben diesen LVRS-Techniken besteht die Möglichkeit einer minimalinvasiven, bronchoskopisch geführten Therapie mit Einbahnstraßenventilen, endobronchialen Coils oder Wasserdampfablation. Allen chirurgischen und bronchoskopischen Verfahren gemein ist die Notwendigkeit einer kritischen Patientenselektion und einer aussagekräftigen radiologischen Diagnostik zur Therapieplanung. Dazu gehören die Akquise eines computertomografischen Volumendatensatzes der Lunge, die softwareunterstützte Quantifizierung des Emphysemanteils am Lungengewebe und die Beurteilung der Fissurenintegrität. Vor allem bei komplexen Befundkonstellationen können nuklearmedizinische Untersuchungen wertvolle Zusatzinformationen liefern. Die interdisziplinäre Emphysemkonferenz entscheidet dann unter Würdigung sämtlicher Vordiagnostik, welcher Patient welchem Therapieverfahren zugeführt werden soll.
Abstract
In cases where conservative treatment for COPD with emphysema has been unsuccessful and a lung transplant is not a viable option, reducing the lung volume may be the most appropriate therapeutic course of action. Lung volume reduction surgery (LVRS) employs a range of techniques, including apical shaving, targeted resection of a target zone and complete flap resection. In addition to these LVRS techniques, minimally invasive, bronchoscopically guided therapy with one-way valves, endobronchial coils or water vapour ablation is also a possibility. All surgical and bronchoscopic procedures have one thing in common: they all require critical patient selection and meaningful radiological diagnostics for treatment planning. This encompasses the acquisition of a data set for computed tomography of the lung, the software-supported quantification of the proportion of empyema in the lung tissue, and the assessment of fissure integrity. Nuclear medicine examinations have been shown to provide valuable additional information, particularly in cases of complex constellations of findings. The interdisciplinary emphysema conference is then convened to determine the most appropriate treatment procedure for each patient, taking into account all preliminary diagnostic findings.
Publikationsverlauf
Eingereicht: 31. Januar 2025
Angenommen nach Revision: 10. Juli 2025
Artikel online veröffentlicht:
25. August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Weder W, Ceulemans LJ, Opitz I. et al. Lung Volume Reduction Surgery in Patients with Homogeneous Emphysema. Thorac Surg Clin 2021; 31: 203-209
- 2 World Health Organization (WHO). Chronic obstructive pulmonary disease (COPD). Zugriff am 06. April 2025 unter: https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd)
- 3 Kahnert K, Jörres RA, Behr J. et al. The diagnosis and treatment of COPD and its comorbidities. Dtsch Arztebl Int 2023; 120: 434-444
- 4 Lynch DA, Moore CM, Wilson C. et al. CT-based Visual Classification of Emphysema: Association with Mortality in the COPDGene Study. Radiology 2018; 288: 172294
- 5 Lynch DA, Austin JHM, Hogg JC. et al. CT-Definable Subtypes of Chronic Obstructive Pulmonary Disease: A Statement of the Fleischner Society. Radiology 2015; 277: 192-205
- 6 Fishman A, Martinez F, Naunheim K. et al. A Randomized Trial Comparing Lung-Volume-Reduction Surgery with Medical Therapy for Severe Emphysema. N Engl J Med 2003; 348: 2059-2073
- 7 Ley-Zaporozhan J, Ley S, Kauczor HU. Morphological and functional imaging in COPD with CT and MRI: present and future. Eur Radiol 2008; 18: 510-521
- 8 Pipavath SNJ, Schmidt RA, Takasugi JE. et al. Chronic obstructive pulmonary disease: radiology-pathology correlation. J Thorac Imag 2009; 24: 171-180
- 9 Gevenois PA, de Maertelaer V, Vuyst PD. et al. Comparison of computed density and macroscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med 1995; 152: 653-657
- 10 Martini K, Frauenfelder T. Emphysema and lung volume reduction: the role of radiology. J Thorac Dis 2018; 10 (Suppl. 23) S2719-S2731
- 11 Criner GJ, Delage A, Voelker K. et al. Improving Lung Function in Severe Heterogenous Emphysema with the Spiration Valve System (EMPROVE). A Multicenter, Open-Label Randomized Controlled Clinical Trial. Am J Resp Crit Care 2019; 200: 1354-1362
- 12 Koster TD, van Rikxoort EM, Huebner RH. et al. Predicting Lung Volume Reduction after Endobronchial Valve Therapy Is Maximized Using a Combination of Diagnostic Tools. Respiration 2016; 92: 150-157
- 13 Doellinger F, Theilig DC, Feldhaus F. et al. Bildgebung vor und nach endoskopischer Lungenvolumenreduktion. Radiologe 2019; 59: 369-384
- 14 Martini K, Frauenfelder T. Advances in imaging for lung emphysema. Ann Transl Med 2020; 8: 1467-1467
- 15 Mortensen J, Berg RMG. Lung Scintigraphy in COPD. Semin Nucl Med 2019; 49: 16-21
- 16 Borgheresi A, Cesari E, Agostini A. et al. Pulmonary emphysema: the assessment of lung perfusion with Dual-Energy CT and pulmonary scintigraphy. Radiol Med 2024; 129: 1622-1632
- 17 Hagar MT, Schlett CL, Oechsner T. et al. Photon-Counting Detector CT: Advances and Clinical Applications in Cardiovascular Imaging. RoFo 2024; 197: 509-517
- 18 Tortora M, Gemini L, D’Iglio I. et al. Spectral Photon-Counting Computed Tomography: A Review on Technical Principles and Clinical Applications. J Imaging 2022; 8: 112
- 19 Scharm SC, Schaefer-Prokop C, Winther HB. et al. Regional Pulmonary Morphology and Function: Photon-counting CT Assessment. Radiology 2023; 308: e230318
- 20 Remy-Jardin M, Guiffault L, Oufriche I. et al. Image quality of lung perfusion with photon-counting-detector CT: comparison with dual-source, dual-energy CT. Eur Radiol 2024; 34: 7831-7844
- 21 Kaireit TF, Voskrebenzev A, Gutberlet M. et al. Comparison of quantitative regional perfusion-weighted phase resolved functional lung (PREFUL) MRI with dynamic gadolinium-enhanced regional pulmonary perfusion MRI in COPD patients. J Magn Reson Imaging 2019; 49: 1122-1132
- 22 Mugler JP, Altes TA. Hyperpolarized 129Xe MRI of the human lung. J Magn Reson Imaging 2013; 37: 313-331
- 23 Nyilas S, Bauman G, Sommer G. Detektion von Lungenveränderungen bei Patienten mit Mukoviszidose: Innovationen der Magnetresonanztomographie des Thorax. Radiologe 2020; 60: 823-830
- 24 Anikeeva M, Sangal M, Speck O. et al. Nichtinvasive funktionelle Lungenbildgebung mit hyperpolarisiertem Xenon. Z Pneumologie 2022; 19: 264-276
- 25 Stewart NJ, Horn FC, Norquay G. et al. Reproducibility of quantitative indices of lung function and microstructure from 129Xe chemical shift saturation recovery (CSSR) MR spectroscopy. Magn Reson Med 2017; 77: 2107-2113
- 26 Wang Z, Rankine L, Bier EA. et al. Using hyperpolarized 129Xe gas-exchange MRI to model the regional airspace, membrane, and capillary contributions to diffusing capacity. J Appl Physiol 2021; 130: 1398-1409
- 27 Voskrebenzev A, Klimeš F, Wacker F. et al. Phase-resolved Functional Lung MRI for Pulmonary Ventilation and Perfusion (V/Q) Assessment. J Vis Exp 2024;
- 28 Voskrebenzev A, Gutberlet M, Klimeš F. et al. Feasibility of quantitative regional ventilation and perfusion mapping with phase-resolved functional lung (PREFUL) MRI in healthy volunteers and COPD, CTEPH, and CF patients. Magn Reson Med 2018; 79: 2306-2314
- 29 Voskrebenzev A, Kaireit TF, Klimeš F. et al. PREFUL MRI Depicts Dual Bronchodilator Changes in COPD: A Retrospective Analysis of a Randomized Controlled Trial. Radiol: Cardiothorac Imaging 2022; 4: e210147