RSS-Feed abonnieren

DOI: 10.1055/a-2681-2944
Synthesis of Allenyl Esters by Horner–Wadsworth–Emmons-Type Reactions of Methyl 2-[Bis(benzylthio)phosphoryl]acetate and Ketenes Using Grignard Reagents
Funding Information This work was supported by JSPS KAKENHI Grant Numbers JP20K06966 and JP23K06026.

Abstract
Methyl 2-[bis(benzylthio)phosphoryl]acetate and its analogues have proven to be efficient Horner–Wadsworth–Emmons (HWE)-type reagents for synthesizing conjugated allenyl esters and their analogues through reactions with disubstituted ketenes using Grignard reagents. A series of HWE-type reagents containing the bis(benzylthio)phosphoryl group showed better reactivity than the corresponding HWE reagents, where two phosphorus–sulfur bonds were substituted with phosphorus–oxygen bonds.
Keywords
Horner–Wadsworth–Emmons reagents - Phosphorus–sulfur bond - Conjugated allenyl esters - Ketenes - Allenes - Grignard reagents - OlefinationPublikationsverlauf
Eingereicht: 20. Mai 2025
Angenommen nach Revision: 08. August 2025
Accepted Manuscript online:
11. August 2025
Artikel online veröffentlicht:
03. September 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Bisceglia JÁ, Orelli LR. Curr Org Chem 2012; 16: 2206
- 1b Jasem YA, El-Esawi R, Thiemann T. J Chem Res 2014; 38: 453
- 1c Bisceglia JÁ, Orelli LR. Curr Org Chem 2015; 19: 744
- 1d Kobayashi K, Tanaka III K, Kogen H. Tetrahedron Lett 2018; 59: 568
- 1e Roman D, Sauer M, Beemelmanns C. Synthesis 2021; 53: 2713
- 1f Bilska-Markowska M, Kaźmierczak M. Org Biomol Chem 2023; 21: 1095
- 1g Babar J, Ahmad S, Parveen B. et al. Top Curr Chem 2025; 383: 20
- 2a Runge W, Kresze G. Liebigs Ann Chem 1975; 1361
- 2b Tanaka K, Otsubo K, Fuji K. Tetrahedron Lett 1996; 37: 3735
- 2c Yamazaki J, Watanabe T, Tanaka K. Tetrahedron-Asymmetry 2001; 12: 669
- 2d Nagaoka Y, Inoue H, Tomioka K. Phosphorus Sulfur Silicon Relat Elem 1843; 2002: 177
- 2e Inoue H, Tsubouchi H, Nagaoka Y, Tomioka K. Tetrahedron 2002; 58: 83
- 2f Huang X, Xiong Z-C. Chem Commun 2003; 1714
- 2g Plunkett S, Dahms K, Senge MO. Eur J Org Chem 2013; 1566
- 3a Nagao Y, Kim K, Sano S. et al. Tetrahedron Lett 1996; 37: 861
- 3b Lepore SD, He Y, Damisse P. J Org Chem 2004; 69: 9171
- 3c Sano S, Shimizu H, Nagao Y. Tetrahedron Lett 2005; 46: 2883
- 3d Sano S, Shimizu H, Kim K, Lee WS, Shiro M, Nagao Y. Chem Pharm Bull 2006; 54: 196
- 3e Maity P, Lepore SD. J Org Chem 2009; 74: 158
- 3f Neff RK, Frantz DE. ACS Catal 2014; 4: 519
- 4 Sano S, Matsumoto T, Toguchi M, Nakao M. Synlett 2018; 29: 1461
- 5a Still WC, Gennari C. Tetrahedron Lett 1983; 24: 4405
- 5b Messik F, Oberthür M. Synthesis 2013; 45: 167
- 5c Molnár K, Takács L, Kádár M, Kardos Z, Faigl F. Synthesis 2015; 47: 1085
- 5d Janicki I, Kiełbasiński P. Adv Synth Catal 2020; 362: 2552
- 5e Janicki I, Kiełbasiński P. Synthesis 2022; 54: 378
- 5f Janicki I, Kiełbasiński P. Molecules 2022; 27: 7138
- 5g Janicki I. J Org Chem 2025; 90: 5725
- 6 Sano S, Matsumoto T, Yano T, Toguchi M, Nakao M. Synlett 2015; 26: 2135
- 7a Pinho e Melo TMVD, Cardoso AL, d’A. Rocha Gonsalves AM, Costa Pessoa J, Paixão JA, Beja AM. Eur J Org Chem. 2004: 4830
- 7b Li C-Y, Zhu B-H, Ye L-W. et al. Tetrahedron 2007; 63: 8046
- 7c Allen AD, Tidwell TT. Chem Rev 2013; 113: 7287
- 7d Radhoff N, Studer A. Nat Commun 2022; 13: 3083
- 8a Sano S, Yamada S, Ihara T, Seki K, Kitaike S, Nakao M. Synlett 2025; 36: 546
- 8b Nakao M, Okamoto M, Isetani S, Imai A, Kitaike S, Sano S. SynOpen 2025; 9: 131
- 9 Preparation of Methyl 4-Phenylpenta-2,3-dienoate (4a): To a solution of methyl 2-[bis(benzylthio)phosphoryl]acetate (2) (65.7 mg, 0.179 mmol) in anhydrous THF (1.5 mL) was added i-PrMgBr (0.67 mol/L in THF, 294 μL, 0.197 mmol), and the solution was stirred at 0 °C for 10 min under argon. After adding triethylamine (100 μL, 0.717 mmol) and 2-phenylpropionyl chloride (3a) (53.1 μL, 0.359 mmol), the mixture was stirred at 0 °C for 10 min under argon. The reaction mixture was quenched with sat. aq NH4Cl (4 mL) and then extracted with CHCl3 (20 mL x 3). The extract was dried over anhydrous MgSO4, filtered, and concentrated in vacuo. The oily residue was purified by flash column chromatography [Silica Gel PSQ 60B (Fuji Silysia Chemical): n-hexane–EtOAc (20:1)] to afford 4a (33.5 mg, 99%) as a yellow oil. IR (neat): 2951, 1948, 1721, 1495, 1437, 1392, 1263, 1210, 1152, 1028 cm-1. 1H NMR (500 MHz, CDCl3): δ = 7.41–7.33 (m, 4 H), 7.29–7.25 (m, 1 H), 5.90 (q, J = 2.9 Hz, 1 H), 3.75 (s, 3 H), 2.21 (d, J = 2.9 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 214.0, 166.1, 134.2, 128.6, 127.9, 126.2, 105.4, 89.5, 52.0, 16.2. HRMS (ESI): m/z [M + Na]+ calcd for C12H12O2Na: 211.0735; found: 211.0736
- 10 Ao Y-F, Wang D-X, Zhao L, Wang M-X. J Org Chem 2014; 79: 3103
- 11 Isopropyl 2-phenylpropanoate was prepared from acid chloride 3a and isopropanol in the presence of triethylamine, and the chemical structure of the by-product was confirmed to have the same chemical structure through comparison of the 1H NMR spectrum.
- 12 Mitchell AG, Nicholls D, Walker I, Irwin WJ, Freeman S. J Chem Soc Perkin Trans 2 1991; 1297
- 13a Chen L, Wang J, Lin C, Zhu Y, Du D. Org Lett 2022; 24: 7047
- 13b Xia J, Ma R, Wang L, Sun J, Zheng G, Zhang Q. Org Chem Front 2024; 11: 3089
- 13c Teng B-H, Kuai C-S, Zhao Y, Wu X-F. Tetrahedron 2024; 157: 133965
- 14 Wang J, Zheng W-F, Li Y, Guo Y-L, Quian H, Ma S. Org Chem Front 2024; 11: 2477
For some syntheses of conjugated allenyl esters, see:
For allenyl ketones, see:
For allenyl amides, see: