RSS-Feed abonnieren
DOI: 10.1055/a-2684-3365
Deckung perinealer und pelviner Defekte: die A. epigastrica inferior (DIEA) als Anschlussgefäß für die freie mikrochirurgische Rekonstruktion
Reconstruction of Perineal and Pelvic Defects: the Inferior Epigastric Artery (DIEA) as a Recipient Vessel for Free Flap ReconstructionAutoren
Zusammenfassung
Hintergrund
Großflächige Defekte im perinealen oder vorderen/lateralen Beckenbereich können infolge tumorbedingter Resektionen, Infektionen oder aufgrund postoperativer Komplikationen entstehen. In Fällen, in denen lokale oder gestielte Lappenplastiken nicht ausreichen, ist eine mikrochirurgische Rekonstruktion mittels freier Lappen notwendig. Die A. epigastrica inferior (DIEA) kommt aufgrund ihrer Lage und ihres Kalibers als Anschlussgefäß für einen mikrovaskulären Gewebetransfer infrage.
Patienten/Materialien und Methoden
In einer retrospektiven Fallstudie wurden zwischen Juni 2024 und März 2025 Patienten mit perinealen oder pelvinen Defekten mikrochirurgisch versorgt. Die Defektdeckung erfolgte mit freien Lappenplastiken (muskulokutane Vastus-lateralis- (MVL), Latissimus-dorsi- (LD) und Paraskapularlappen) und End-zu-End-Gefäßanschluss an die DIEA. Die präoperative Planung beinhaltete eine CT-Angiografie zur Beurteilung der Gefäßsituation. Die mikrochirurgischen Anastomosen wurden standardisiert durchgeführt, wobei die arteriellen Anastomosen von Hand geknüpft wurden, die venösen Anastomosen mittels Venenkoppler erfolgten. Die Perfusion der Anastomosen und der Lappenplastik wurde mittels ICG-Fluoreszenz kontrolliert. Postoperativ erfolgten eine strukturierte Entlastung und Mobilisation.
Ergebnisse
Im untersuchten Zeitraum wurden 5 Patienten (Durchschnittsalter 64,6 Jahre, ASA-Score 2,8) mit perinealen oder pelvinen Defekten von durchschnittlich 413,4 cm² behandelt. Zugrunde liegende Ursachen waren Tumoren (3) und ausgedehnte Infektionen (2). Die DIEA konnte in allen Fällen als zuverlässiges Anschlussgefäß verwendet werden. Die venösen Anastomosen erfolgten im Durchschnitt mit 2,5-mm-Kopplern (Range: 2–3 mm). Es traten keine Lappenverluste oder -nekrosen auf.
Schlussfolgerung
Die Ergebnisse bestätigen die Eignung der DIEA als konstantes, oberflächliches und gut präparierbares Anschlussgefäß mit stabilem Kaliber und ausreichendem Fluss auch für große Lappen. Sie ermöglicht sichere mikrochirurgische Rekonstruktionen im vorderen und lateralen Beckenbereich und stellt damit eine valide Alternative zur A. femoralis dar, ohne die Durchblutung der Extremität zu kompromittieren. Die Studie unterstreicht den hohen Stellenwert der DIEA in der plastisch-rekonstruktiven Chirurgie komplexer Becken- und Perinealdefekte.
Abstract
Purpose
Extensive defects in the perineal or anterior/lateral pelvic region can occur as a result of tumour-related resections, infections, or postoperative complications. In cases where local or pedicled flap reconstructions are insufficient, microsurgical reconstruction using free flaps becomes necessary. Due to its location and calibre, the inferior epigastric artery (DIEA) is a suitable recipient vessel for microsurgical tissue transfer.
Patients/Materials and Methods
In a retrospective case study conducted between June 2024 and March 2025, patients with perineal or pelvic defects underwent microsurgical reconstruction. Defect coverage was achieved using free flap techniques (musculocutaneous vastus lateralis [MVL], musculocutaneous latissimus dorsi [LD] and parascapular flaps) with end-to-end anastomosis to the DIEA. Preoperative planning included CT angiography to assess the vascular situation. Microsurgical anastomoses were performed in a standardised manner, with arterial anastomoses hand-sewn and venous anastomoses carried out using venous couplers. The perfusion of the anastomoses and the flap was assessed using ICG fluorescence. Postoperative care included structured offloading and mobilisation.
Results
During the study period, five patients (average age 64.6 years, ASA score 2.8) with perineal or pelvic defects averaging 413.4 cm² were treated. The underlying causes were tumours (3) and extensive infections (2). The DIEA was successfully used as a reliable recipient vessel in all cases. Venous anastomoses were performed using venous couplers with an average diameter of 2.5 mm (range: 2–3 mm). No flap losses or necroses occurred.
Conclusion
The results confirm the suitability of the DIEA as a consistent, superficial, and easily dissectible recipient vessel with stable calibre and sufficient flow, even for large flaps. It enables safe microsurgical reconstructions in the anterior and lateral pelvic region and represents a valid alternative to the femoral artery, without compromising extremity perfusion. The study highlights the significant role of the DIEA in plastic and reconstructive surgery of complex pelvic and perineal defects.
Schlüsselwörter
A. epigastrica inferior - DIEA - perineale Defekte - pelvine Defekte - Mikrochirurgie - freie LappenrekonstruktionKeywords
deep inferior epigastric artery - DIEA - perineal defects - pelvic defects - microsurgery - free flap reconstructionPublikationsverlauf
Eingereicht: 16. April 2025
Angenommen nach Revision: 13. August 2025
Artikel online veröffentlicht:
02. Oktober 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Loverro M, Aloisi A, Tortorella L. et al. Trends and current aspects of reconstructive surgery for gynecological cancers. Int J Gynecol Cancer 2024; 34: 426-435
- 2 Mughal M, Baker RJ, Muneer A. et al. Reconstruction of perineal defects. Ann R Coll Surg Engl 2013; 95: 539-544
- 3 Shahzad F, Ray E. Pelvic and Perineal Reconstruction. Plast Reconstr Surg 2024; 154: 803e-816e
- 4 Insua-Pereira I, Ferreira PC, Teixeira S. et al. Fournier’s gangrene: a review of reconstructive options. Cent European J Urol 2020; 73: 74-79
- 5 Tripodi D, Amabile MI, Gagliardi F. et al. Algorithm of rational approach to reconstruction in Fournier’s disease. Open Med (Wars) 2021; 16: 1028-1037
- 6 Kiiski J, Parry MC, Le Nail LR. et al. Surgical and oncological outcomes after hindquarter amputation for pelvic sarcoma. Bone Joint J 2020; 102-B: 788-794
- 7 Schwartz AJ, Trask DJ, Bews KA. et al. Hip Disarticulation for Periprosthetic Joint Infection: Frequency, Outcome, and Risk Factors. J Arthroplasty 2020; 35: 3269-3273.e3
- 8 Zalavras CG, Rigopoulos N, Ahlmann E. et al. Hip disarticulation for severe lower extremity infections. Clin Orthop Relat Res 2009; 467: 1721-1726
- 9 Coelho JAJ, McDermott FD, Cameron O. et al. Single centre experience of bilateral gracilis flap perineal reconstruction following extra-levator abdominoperineal excision. Colorectal Dis 2019; 21: 910-916
- 10 Singh M, Kinsley S, Huang A. et al. Gracilis Flap Reconstruction of the Perineum: An Outcomes Analysis. J Am Coll Surg 2016; 223: 602-610
- 11 Arikawa M, Akazawa S, Kagaya Y. et al. Free Flap Reconstruction of Oncologic Gluteal Defects. Ann Plast Surg 2022; 88: 420-424
- 12 Hung SJ, Chen HC, Wei FC. Free flaps for reconstruction of the lower back and sacral area. Microsurgery 2000;
- 13 Abdou A, Bruns H, Troja A. et al. [Plastic surgery of extended defects after exenteration of the pelvis. Zentralbl Chir 2015; 140: 214-218
- 14 Ring A, Behr B, Kolbenschlag J. et al. [Reconstruction options for pelvic defects after abdominal exenteration]. Zentralbl Chir 2015; 140: 210-213
- 15 Anthony JP, Ritter E, Moelleken BR. Utility of the inferior gluteal vessels in free flap coverage of sacral wounds. Ann Plast Surg 1992; 29: 371-375
- 16 Demmer W, Alt V, Mert S. et al. [Coverage of complex pararectal pelvic defects: role of the free myocutaneous musculus vastus lateralis flap]. Handchir Mikrochir Plast Chir 2024; 56: 279-285
- 17 Boucher F, Brosset S, Shipkov H. et al. An anatomic study of deep inferior epigastric artery diameters at the origin from external iliac and at the lateral border of rectus abdominis muscle by computed tomographic angiography from autologous breast reconstruction patients. Ann Chir Plast Esthet 2020; 65: 70-76
- 18 Komemushi T, Okuda I, Komemushi A. et al. Matching the perforating branch of the internal thoracic artery and the deep inferior epigastric artery for breast reconstruction using multi-detector row computed tomography. Jpn J Radiol 2022; 40: 624-629
- 19 Park SO, Imanishi N, Chang H. The Anatomic Features and Role of Superficial Inferior Epigastric Vein in Abdominal Flap. Arch Plast Surg 2022; 49: 482-487
- 20 Ireton JE, Lakhiani C, Saint-Cyr M. Vascular anatomy of the deep inferior epigastric artery perforator flap: a systematic review. Plast Reconstr Surg 2014; 134: 810e-821e
- 21 Joy P, Prithishkumar IJ, Isaac B. Clinical anatomy of the inferior epigastric artery with special relevance to invasive procedures of the anterior abdominal wall. J Minim Access Surg 2017; 13: 18-21
- 22 Abu Jamra FN, Afeiche N, Sumrani NB. The use of a vastus lateralis muscle flap to repair a gluteal defect. Br J Plast Surg 1983; 36: 319-321
- 23 Park S, Koh KS. Superior gluteal vessel as recipient for free flap reconstruction of lumbosacral defect. Plast Reconstr Surg 1998; 101: 1842-1849
- 24 Paro J, Chiou G, Sen SK. Comparing Muscle and Fasciocutaneous Free Flaps in Lower Extremity Reconstruction--Does It Matter?. Ann Plast Surg 2016; 76 (Suppl. 3) S213-S215
- 25 Yuan N, Ray EC, Smith S. et al. Primary Use of the Deep Inferior Epigastric Pedicle for Free-flap Phalloplasty: Rationale, Technique, and Outcomes. Plast Reconstr Surg Glob Open 2022; 10: e4307
- 26 Koshima I, Soeda S. Inferior epigastric artery skin flaps without rectus abdominis muscle. Br J Plast Surg 1989; 42: 645-648
- 27 Gurunluoglu R, Rosen MJ. Recipient vessels for microsurgical flaps to the abdomen: A systematic review. Microsurgery 2017; 37: 707-716
- 28 Li S, Luo S, Yang Z. et al. Deep inferior epigastric vessels for free scapular flap phalloplasty. Medicine (Baltimore) 2023; 102: e34603
- 29 Myung Y, Choi B, Yim SJ. et al. The originating pattern of deep inferior epigastric artery: anatomical study and surgical considerations. Surg Radiol Anat 2018; 40: 873-879
- 30 Toia F, D’Arpa S, Brenner E. et al. Segmental anatomy of the vastus lateralis: guidelines for muscle-sparing flap harvest. Plast Reconstr Surg 2015; 135: 185e-198e
- 31 Haumer A, Gohritz A, Clauss M. et al. [Plastic-surgical reconstruction of the lower extremity in senior patients]. Unfallchirurgie (Heidelb) 2023; 126: 299-311
- 32 Wei FC, Mardini S. Flaps and Reconstructive Surgery. Philadelphia: Saunders/Elsevier; 2009
- 33 Nassif TM, Vidal L, Bovet JL. et al. The parascapular flap: a new cutaneous microsurgical free flap. Plast Reconstr Surg 1982; 69: 591-600
- 34 Ozkan O, Ozgentas HE. Open guide suture technique for safe microvascular anastomosis. Ann Plast Surg 2005; 55: 289-291
- 35 Ludolph I, Horch RE, Arkudas A. et al. Enhancing Safety in Reconstructive Microsurgery Using Intraoperative Indocyanine Green Angiography. Front Surg 2019; 6: 39
- 36 Moellhoff N, Demmer W, Pistek S. et al. Impact of Negative Pressure Wound Therapy on Perfusion Dynamics in Free Latissimus Dorsi Muscle Flaps. J Clin Med 2024; 13: 5261
- 37 Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004; 240: 205-213
- 38 Westbom CM, Talbot SG. An Algorithmic Approach to Perineal Reconstruction. Plast Reconstr Surg Glob Open 2019; 7: e2572
- 39 Byun JS, Cho BC, Baik BS. Results of one-stage penile reconstruction using an innervated radial osteocutaneous flap. J Reconstr Microsurg 1994; 10: 321-331
- 40 Piza H, Rath T, Hausmaniger C. et al. Wound closure at the trunk by microvascular free flap transfer. Microsurgery 1993; 14: 260-265
- 41 Sekido M, Yamamoto Y, Sugihara T. et al. Microsurgical reconstruction of chest- and abdominal-wall defects associated with intraperitoneal vessels. J Reconstr Microsurg 1996; 12: 425-430
- 42 Roubaud MS, Baumann DP. Flap Reconstruction of the Abdominal Wall. Semin Plast Surg 2018; 32: 133-140
- 43 Arora R, Mishra KS, Bhoye HT. et al. Mechanical Anastomotic Coupling Device versus Hand-sewn Venous Anastomosis in Head and Neck Reconstruction-An Analysis of 1694 Venous Anastomoses. Indian J Plast Surg 2021; 54: 118-123
- 44 Ribaudo JG, He K, Madira S. et al. Sutureless vascular anastomotic approaches and their potential impacts. Bioact Mater 2024; 38: 73-94
