Subscribe to RSS
DOI: 10.1055/a-2697-5413
CT-FFR: Wie eine neue Technologie die kardiovaskuläre Diagnostik transformieren könnte
Article in several languages: English | deutschAuthors

Zusammenfassung
Hintergrund
Die CT-basierte fraktionelle Flussreserve (CT-FFR) ist eine vielversprechende nicht-invasive Methode zur funktionellen Beurteilung von Koronarstenosen. Sie erweitert die diagnostischen Möglichkeiten der Koronaren CT-Angiografie (cCTA), indem sie hämodynamische Informationen liefert und potenziell unnötige invasive Koronarangiografien reduziert.
Methode
Dieser Übersichtsartikel fasst aktuelle technologische Entwicklungen, Studienergebnisse und klinische Anwendungen der CT-FFR zusammen. Zudem werden die Vor- und Nachteile verschiedener Softwarelösungen, darunter auf künstlicher Intelligenz (KI) basierende On-Site-Analysen, sowie deren potenzielle Integration in die klinische Routine diskutiert.
Ergebnisse
Studien zeigen, dass die CT-FFR die diagnostische Genauigkeit im Vergleich zur cCTA verbessert und das Patientenmanagement optimieren kann. Fortschritte in der künstlichen Intelligenz und neue bildgebende Verfahren wie die Photon-Counting-CT könnten die CT-FFR weiter verfeinern und ihre Anwendbarkeit erweitern. Trotz vielversprechender Ergebnisse besteht weiterhin Forschungsbedarf hinsichtlich Langzeitvalidierung, standardisierter Workflows und wirtschaftlicher Machbarkeit.
Schlussfolgerung
Die CT-FFR ist ein vielversprechendes ergänzendes Tool zur Beurteilung der hämodynamischen Relevanz von Koronarstenosen. Insbesondere bei komplexen, langstreckigen oder konsekutiven Stenosen ist die CT-FFR hilfreich, weil eine rein anatomische, visuelle Betrachtung nicht immer ausreicht. Die Kombination aus technischen Innovationen und KI-gestützter Bildanalyse könnte das Potenzial haben, die nicht-invasive Koronardiagnostik nachhaltig zu verändern.
Kernaussagen
-
Die CT-FFR steigert die Spezifität und diagnostische Genauigkeit im Vergleich zur cCTA allein.
-
Technologische Fortschritte könnten die CT-FFR weiter verfeinern und ihre Anwendbarkeit erweitern.
-
Die zunehmende Verbreitung und verbesserte Anwendbarkeit der CT-FFR im klinischen Alltag ist vielversprechend.
Zitierweise
-
Kloth C, Brendel JM, Kübler J et al. CT-FFR: How a new technology could transform cardiovascular diagnostic imaging. Rofo 2025; DOI 10.1055/a-2697-5413
Publication History
Received: 13 April 2025
Accepted after revision: 21 August 2025
Article published online:
15 October 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Knuuti J, Wijns W, Saraste A. et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 2020; 41 (03) 407-477
- 2 Soschynski M, Hagar MT, Taron J. et al. Update for the Performance of CT Coronary Angiography – Evidence-Based Application and Technical Guidance According to Current Consensus Guidelines and Practical Advice from the Clinical Routine. Rofo 2022; 194 (06) 613-624
- 3 Gutberlet M, Krieghoff C, Gohmann R. Is FFRCT a game changer in coronary CT angiography?. Herz 2020; 45 (05) 431-440
- 4 Beschluss des Gemeinsamen Bundesausschusses über eine Änderung der Richtlinie Methoden vertragsärztliche Versorgung (MVV-RL): Computertomografie-Koronarangiografie bei Verdacht auf eine chronische koronare Herzkrankheit vom 18.01.2024. https://www.g-ba.de/downloads/39–261–6418/2024–01–18_MVV-RL_CCTA-KHK.pdf
- 5 Coronary computed tomography angiography (with or without functional evaluation) for the diagnosis of chronic coronary heart disease: IQWiG Reports – Commission No. D22–01 Institute for Quality and Efficiency in Health Care (IQWiG). Cologne (Germany): Institute for Quality and Efficiency in Health Care (IQWiG); 2024 Mar 8.
- 6 Chen J, Wetzel LH, Pope KL. et al. FFRCT: Current Status. AJR Am J Roentgenol 2021; 216 (03) 640-648
- 7 Min JK, Taylor CA, Achenbach S. et al. Noninvasive Fractional Flow Reserve Derived From Coronary CT Angiography: Clinical Data and Scientific Principles. JACC Cardiovasc Imaging 2015; 8 (10) 1209-1222
- 8 Asher A, Singhal A, Thornton G.. et al. FFRCT derived from computer tomography angiography: the experience in the UK. Expert Review of Cardiovascular Therapy 2018;
- 9 Soschynski M, Taron J, Schlett CL. et al. Update on coronary CT-more than just anatomical imaging?. : Current guidelines and functional CT techniques for the quantification of stenoses Radiologe 2020; 60 (12) 1131-1141
- 10 Soschynski M, Storelli R, Birkemeyer C. et al. CT Myocardial Perfusion and CT-FFR versus Invasive FFR for Hemodynamic Relevance of Coronary Artery Disease. Radiology 2024; 312 (02) e233234
- 11 Mathew RC, Gottbrecht M, Salerno M. Computed Tomography Fractional Flow Reserve to Guide Coronary Angiography and Intervention. Interv Cardiol Clin 2018; 7 (03) 345-354
- 12 Renker M, Schoepf UJ, Kim WK. Combined CT Coronary Artery Assessment and TAVI Planning. Diagnostics (Basel) 2023; 13 (07) 1327
- 13 Michail M, Ihdayhid AR, Comella A. et al. Feasibility and Validity of Computed Tomography-Derived Fractional Flow Reserve in Patients with Severe Aortic Stenosis: The CAST-FFR Study. Circ. Cardiovasc. Interv 2021; 14: e009586
- 14 Gohmann RF, Pawelka K, Seitz P. et al. Combined cCTA and TAVR Planning for Ruling Out Significant CAD: Added Value of ML-Based CT-FFR. JACC Cardiovasc. Imaging 2022; 15: 476-486
- 15 Brandt V, Schoepf UJ, Aquino GJ. et al. Impact of machine-learning-based coronary computed tomography angiography-derived fractional flow reserve on decision-making in patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur. Radiol 2022; 32: 6008-6016
- 16 Aquino GJ, Abadia AF, Schoepf UJ. et al. Coronary CT Fractional Flow Reserve before Transcatheter Aortic Valve Replacement: Clinical Outcomes. Radiology 2022; 302: 50-58
- 17 Langenbach MC, Langenbach IL, Foldyna B. et al. Advanced CT measures of coronary artery disease with intermediate stenosis in patients with severe aortic valve stenosis. Eur Radiol 2024; 34 (08) 4897-4908
- 18 Wienemann H, Langenbach MC, Mauri V. et al. Feasibility and Comparison of Resting Full-Cycle Ratio and Computed Tomography Fractional Flow Reserve in Patients with Severe Aortic Valve Stenosis. J Cardiovasc Dev Dis 2022; 9 (04) 116
- 19 Brendel JM, Walterspiel J, Hagen F. et al. Coronary artery disease evaluation during transcatheter aortic valve replacement work-up using photon-counting CT and artificial intelligence. Diagn Interv Imaging 2024; 105 (7/8) 273-280
- 20 Becker LM, Peper J, van Ginkel DJ. et al. Coronary CTA and CT-FFR in trans-catheter aortic valve implantation candidates: a systematic review and meta-analysis. Eur Radiol 2024;
- 21 Celeng C, Leiner T, Maurovich-Horvat P. Anatomical and functional computed tomography for diagnosing hemodynamically significant coronary artery disease: a meta-analysis. JACC Cardiovasc Imaging 2019; 12: 1316-1325
- 22 Nørgaard BL, Terkelsen CJ, Mathiassen ON. et al. Coronary CT angiographic and flow reserve-guided management of patients with stable ischemic heart disease. J Am Coll Cardiol 2018; 72: 2123-2134
- 23 Rabbat MG, Berman DS, Kern M. et al. Interpreting results of coronary computed tomography angiography-derived fractional flow reserve in clinical practice. J Cardiovasc Comput Tomogr 2017; 11 (05) 383-388
- 24 Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: Scientific basis. J Am Coll Cardiol 2013; 61 (22) 2233-2241
- 25 Nozaki YO, Fujimoto S, Kawaguchi YO. et al. Prognostic value of the optimal measurement location of on-site CT-derived fractional flow reserve. J Cardiol 2022; 80 (01) 14-21
- 26 Kueh SH, Mooney J, Ohana M. et al. Fractional flow reserve derived from coronary computed tomography angiography reclassification rate using value distal to lesion compared to lowest value. J Cardiovasc Comput Tomogr 2017; 11 (06) 462-467
- 27 Gassenmaier S, Tsiflikas I, Greulich S. et al. Prevalence of pathological FFRCT values without coronary artery stenosis in an asymptomatic marathon runner cohort. Eur Radiol 2021; 31 (12) 8975-8982
- 28 De Bruyne B, Pijls NH, Kalesan B. et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 2012; 367: 991-1001
- 29 Koo BK, Erglis A, Doh JH. et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. Am Coll Cardiol 2011; 58 (19) 1989-1997
- 30 Renker M, Schoepf UJ, Wang R. et al. Comparison of diagnostic value of a novel noninvasive coronary computed tomography angiography method versus standard coronary angiography for assessing fractional flow reserve. Am J Cardiol 2014; 114 (09) 1303-1308
- 31 Nørgaard BL, Leipsic J, Gaur S. et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 2014; 63 (12) 1145-1155
- 32 Ko BS, Wong DT, Nørgaard BL. et al. Diagnostic Performance of Transluminal Attenuation Gradient and Noninvasive Fractional Flow Reserve Derived from 320-Detector Row CT Angiography to Diagnose Hemodynamically Significant Coronary Stenosis: An NXT Substudy. Radiology 2016; 279 (01) 75-83
- 33 Douglas PS, De Bruyne B, Pontone G. et al. 1-year outcomes of FFR CT guided care in patients with suspected coronary disease: the PLATFORM Study. J Am Coll Cardiol 2016; 68: 435-445
- 34 Kitabata H, Leipsic J, Patel MR. et al. Incidence and predictors of lesion-specific ischemia by FFRCT: Learnings from the international ADVANCE registry. J. Cardiovasc Comput Tomogr 2018; 12 (02) 95-100
- 35 Nørgaard BL, Terkelsen CJ, Mathiassen ON. et al. Coronary CT Angiographic and Flow Reserve-Guided Management of Patients With Stable Ischemic Heart Disease. J Am Coll Cardiol 2018; 72 (18) 2123-2134
- 36 Andreini D, Modolo R, Katagiri Y. et al. Impact of Fractional Flow Reserve Derived From Coronary Computed Tomography Angiography on Heart Team Treatment Decision-Making in Patients With Multivessel Coronary Artery Disease: Insights From the SYNTAX III REVOLUTION Trial. SYNTAX III REVOLUTION Investigators. Circ Cardiovasc Interv 2019; 12 (12) e007607
- 37 Wang ZQ, Zhou YJ, Zhao YX. et al. Diagnostic accuracy of a deep learning approach to calculate FFR from coronary CT angiography. J Geriatr Cardiol 2019; 16 (01) 42-48
- 38 McNabney CG, Sellers SL, Wilson RJA. et al. Prognosis of CT-derived Fractional Flow Reserve in the Prediction of Clinical Outcomes. Radiol Cardiothorac Imaging 2019; 1 (02) e190021
- 39 Curzen N, Nicholas Z, Stuart B. et al. Fractional flow reserve derived from computed tomography coronary angiography in the assessment and management of stable chest pain: the FORECAST randomized trial. Eur Heart J 2021; 42 (37) 3844-3852
- 40 Kawashima H, Kogame N, Ono M. et al. Diagnostic concordance and discordance between angiography-based quantitative flow ratio and fractional flow reserve derived from computed tomography in complex coronary artery disease. J Cardiovasc Comput Tomogr 2022; 16 (04) 336-342
- 41 Yang J, Shan D, Wang X. et al. On-Site Computed Tomography-Derived Fractional Flow Reserve to Guide Management of Patients With Stable Coronary Artery Disease: The TARGET Randomized Trial. Circulation 2023; 147 (18) 1369-1381
- 42 Taron J, Foldyna B, Eslami P. et al. Cardiac Computed Tomography – More Than Coronary Arteries? A Clinical Update. Rofo 2019; 191 (09) 817-826
- 43 Ding Y, Li Q, Chen Q. et al. Diagnostic performance of a novel automated CT-derived FFR technology in detecting hemodynamically significant coronary artery stenoses: A multicenter trial in China. Am Heart J 2023; 265: 180-190
- 44 Yun CH, Hung CL, Wen MS. et al. CT Assessment of Myocardial Perfusion and Fractional Flow Reserve in Coronary Artery Disease: A Review of Current Clinical Evidence and Recent Developments. Korean J Radiol 2021; 22 (11) 1749-1763
- 45 Guo B, Xing W, Hu C. et al. Clinical Effectiveness of Automated Coronary CT-derived Fractional Flow Reserve: A Chinese Randomized Controlled Trial. China CT-FFR Study 3 Group. Radiology 2024; 313 (01) e233354
- 46 Guo B, Jiang M, Guo X. et al. Diagnostic and prognostic performance of artificial intelligence-based fully-automated on-site CT-FFR in patients with CAD. Sci Bull (Beijing) 2024; 69 (10) 1472-1485
- 47 Tesche C, De Cecco CN, Albrecht MH. et al. Coronary CT Angiography-derived Fractional Flow Reserve. Radiology 2017; 285 (01) 17-33
- 48 Hagen F, Soschynski M, Weis M. et al. Photon-counting computed tomography – clinical application in oncological, cardiovascular, and pediatric radiology. Rofo 2024; 196 (01) 25-35
- 49 Stein T, Rau A, Russe MF. et al. Photon-Counting Computed Tomography – Basic Principles, Potential Benefits, and Initial Clinical Experience. Rofo 2023; 195 (08) 691-698
- 50 Vecsey-Nagy M, Varga-Szemes A, Schoepf UJ. et al. Ultra-high resolution coronary CT angiography on photon-counting detector CT: bi-centre study on the impact of quantum iterative reconstruction on image quality and accuracy of stenosis measurements. Eur J Radiol 2024; 176: 111517
- 51 Si-Mohamed SA, Boccalini S, Lacombe H.. et al. Coronary CT Angiography with Photon-counting CT: First-In-Human Results. Radiology 2022; 303 (02) 303-313
- 52 Mannil M, Hickethier T, Spiczak von J.. et al. Photon-Counting CT: High-Resolution Imaging of Coronary Stents. Invest Radiol 2018; 53 (03) 143-149
- 53 Sigovan M, Si-Mohamed S, Bar-Ness D.. et al. Feasibility of improving vascular imaging in the presence of metallic stents using spectral photon counting CT and K-edge imaging. Sci Rep 2019; 9 (01) 19850
- 54 Wolf EV, Halfmann MC, Schoepf UJ. et al. Intra-individual comparison of coronary calcium scoring between photon counting detector- and energy integrating detector-CT: effects on risk reclassification, Front Cardiovasc Med. 2023; 9: 1053398
- 55 Wolf EV, Gnasso C, Schoepf UJ. et al. Intra-individual comparison of coronary artery stenosis measurements between energy-integrating detector CT and photoncounting detector CT. Imaging 2023; 15 (10)
- 56 Zsarnoczay E, Pinos D, Schoepf UJ. et al. Intra-individual comparison of coronary CT angiography-based FFR between energy-integrating and photon-counting detector CT systems. Int J Cardiol 2024; 399: 131684
- 57 Brendel JM, Walterspiel J, Hagen F. et al. Coronary artery disease detection using deep learning and ultrahigh-resolution photon-counting coronary CT angiography. Diagn Interv Imaging 2024; S2211–5684(24)00209–2
- 58 Tomizawa N, Fujimoto S, Takahashi D. et al. Energy loss is related to CT fractional flow reserve progression in type 2 diabetes mellitus patients. Am Heart J Plus 2023; 35: 100328
- 59 Wang Z, Huang Z, Wang X. The Correlation between Region-specific Epicardial Adipose Tissue and Myocardial Ischemia Defined by CT-FFR in Type 2 Diabetes Mellitus Patients. Curr Med Imaging 2024;
- 60 Lan Z, Ding X, Yu Y. et al. CT-derived fractional flow reserve for prediction of major adverse cardiovascular events in diabetic patients. Cardiovasc Diabetol 2023; 22 (01) 65
- 61 Holmes KR, Gulsin GS, Fairbairn TA. et al. Impact of Smoking on Coronary Volume-to-Myocardial Mass Ratio: An ADVANCE Registry Substudy. Radiol Cardiothorac Imaging 2024; 6 (02) e220197
- 62 Randhawa MK, Takigami AK, Thondapu V. et al. Selective Use of CT Fractional Flow at a Large Academic Medical Center: Insights from Clinical Implementation after 1 Year of Practice. Radiol Cardiothorac Imaging 2024; 6 (02) e230073
- 63 Li J, Yang Z, Sun Z. et al. CT coronary fractional flow reserve based on artificial intelligence using different software: a repeatability study. BMC Med Imaging 2024; 24 (01) 288
- 64 Nozue T, Takamura T, Fukui K. et al. Plaque Volume and Morphology are Associated with Fractional Flow Reserve Derived from Coronary Computed Tomography Angiography. J Atheroscler Thromb 2019; 26 (08) 697-704
- 65 Ouyang LN, Wang R, Wu Q. et al. Exploratory Development of a Prognostic Model for Coronary Artery Disease Utilizing CT-FFR Derived Functional Duke Jeopardy Score. Acad Radiol 2024; S1076–6332(24)00883–3
- 66 Yi Y, Li D, Xu C. et al. Prognostic significance of stress dynamic myocardial CT perfusion: comparison with CT-FFR and CT angiography stenosis-the multicenter VALIDITY trial. Eur Radiol 2024;
- 67 McNabney CG, Sellers SL, Wilson RJA. et al. Prognosis of CT-derived Fractional Flow Reserve in the Prediction of Clinical Outcomes. Radiol Cardiothorac Imaging 2019; 1 (02) e190021
- 68 Burch RA, Siddiqui TA, Tou LC. et al. The Cost Effectiveness of Coronary CT Angiography and the Effective Utilization of CT-Fractional Flow Reserve in the Diagnosis of Coronary Artery Disease. J Cardiovasc Dev Dis 2023; 10 (01) 25
- 69 Brendel JM, Nikolaou K, Foldyna B. Plaque characterization and individualized risk assessment. Radiologie, (Heidelb) 2024; 64 (12) 946-955
- 70 Fournier S, Toth GG, De Bruyne B. et al. Six-year follow-up of fractional flow reserve-guided versus angiography-guided coronary artery bypass graft surgery. Circ Cardiovasc Interv 2018; 11 (06) e006368
- 71 Glineur D, Grau JB, Etienne PY. et al. Impact of preoperative fractional flow reserve on arterial bypass graft anastomotic function: the IMPAG trial. Eur Heart J 2019; 40 (29) 2421-2428
- 72 Mortensen MB, Sand NP, Busk M. et al. Influence of intensive lipid-lowering on CT derived fractional flow reserve in patients with stable chest pain: Rationale and design of the FLOWPROMOTE study. Clin Cardiol 2022; 45 (10) 986-994
- 73 Chen M, Almeida SO, Sayre JW. et al. Distal-vessel fractional flow reserve by computed tomography to monitor epicardial coronary artery disease. Eur Heart J Cardiovasc Imaging 2024; 25 (02) 163-172
- 74 Schuessler M, Saner F, Al-Rashid F. et al. Diagnostic accuracy of coronary computed tomography angiography-derived fractional flow reserve (CT-FFR) in patients before liver transplantation using CT-FFR machine learning algorithm. Eur Radiol 2022; 32 (12) 8761-8768
- 75 Kübler J, Brendel JM, Küstner T. et al. Artificial intelligence-enhanced detection of subclinical coronary artery disease in athletes: diagnostic performance and limitations. Int J Cardiovasc Imaging 2024; 40 (12) 2503-2511
- 76 Gohmann RF, Schug A, Krieghoff C. et al. Interrater Variability of ML-Based CT-FFR in Patients without Obstructive CAD before TAVR: Influence of Image Quality, Coronary Artery Calcifications, and Location of Measurement. J Clin Med 2024; 13 (17) 5247
- 77 Peper J, Becker LM, van den Berg H. et al. Diagnostic Performance of CCTA and CT-FFR for the Detection of CAD in TAVR Work-Up. JACC Cardiovasc Interv 2022; 15 (11) 1140-1149
- 78 Khoo JK, Sellers S, Fairbairn T. et al. Feasibility and Utility of Anatomical and Physiological Evaluation of Coronary Disease With Cardiac CT in Severe Aortic Stenosis (FUTURE-AS Registry): Rationale and Design. J Soc Cardiovasc Angiogr Interv 2024; 3: 101293
- 79 Felbel D, Buck C, Riedel N. et al. Combined Computed Coronary Tomography Angiography and Transcatheter Aortic Valve Implantation (TAVI) Planning Computed Tomography Reliably Detects Relevant Coronary Artery Disease Pre-TAVI. J Clin Med 2024; 13 (16) 4885
- 80 Steyer A, Puntmann VO, Nagel E. et al. Coronary Artery Disease Assessment via On-Site CT Fractional Flow Reserve in Patients Undergoing Transcatheter Aortic Valve Replacement. Radiol Cardiothorac Imaging 2024; 6 (02) e230096
- 81 Aquino GJ, Abadia AF, Schoepf UJ. et al. Coronary CT Fractional Flow Reserve before Transcatheter Aortic Valve Replacement: Clinical Outcomes. Radiology 2022; 302 (01) 50-58
- 82 Zhuang B, Wang S, Zhao S. et al. Computed tomography angiography-derived fractional flow reserve (CT-FFR) for the detection of myocardial ischemia with invasive fractional flow reserve as reference: systematic review and meta-analysis. Eur Radiol 2020; 30 (02) 712-725
- 83 Martin SS, Mastrodicasa D, van Assen M. et al. Value of Machine Learning-based Coronary CT Fractional Flow Reserve Applied to Triple-Rule-Out CT Angiography in Acute Chest Pain. Radiol Cardiothorac Imaging 2020; 2 (03) e190137
- 84 Meier D, Andreini D, Cosyns B. et al. Usefulness of FFR-CT to exclude haemodynamically significant lesions in high-risk NSTE-ACS. EuroIntervention 2025; 21 (01) 73-81
- 85 Fischer AM, van Assen M, Schoepf UJ. et al. Non-invasive fractional flow reserve (FFR CT ) in the evaluation of acute chest pain – Concepts and first experiences. Eur J Radiol 2021; 138: 109633
- 86 Madsen KT, Nørgaard BL, Øvrehus KA. et al. Prognostic Value of Coronary CT Angiography-derived Fractional Flow Reserve on 3-year Outcomes in Patients with Stable Angina. Radiology 2023; 308 (03) e230524
- 87 Bråten AT, Fossan FE, Muller LO. et al. Automated computed tomography-derived fractional flow reserve model for diagnosing haemodynamically significant coronary artery disease: a prospective validation study. Eur Heart J Imaging Methods Pract 2024; 2 (03) qyae102
- 88 Colleran R, Douglas PS, Hadamitzky M. et al. An FFRCT diagnostic strategy versus usual care in patients with suspected coronary artery disease planned for invasive coronary angiography at German sites: one-year results of a subgroup analysis of the PLATFORM (Prospective Longitudinal Trial of FFRCT: Outcome and Resource Impacts) study. Open Heart 2017; 4 (01) e000526
- 89 Di Pietro G, Improta R, De Filippo O. et al. Clinical impact of CCT-FFR as first-strategy in patients with symptomatic stable coronary artery disease: A systematic review and meta-analysis. Cardiovasc Comput Tomogr 2025; S1934–5925(25)00046–2
- 90 Becker LM, Peper J, van Nes SH. et al. Non-invasive physiological assessment of coronary artery obstruction on coronary computed tomography angiography. Neth Heart J 2024; 32 (11) 397-404
- 91 Sand NPR, Veien KT, Nielsen SS. et al. Prospective Comparison of FFR Derived From Coronary CT Angiography With SPECT Perfusion Imaging in Stable Coronary Artery Disease: The ReASSESS Study. JACC Cardiovasc Imaging 2018; 11 (11) 1640-1650
- 92 Nissen L, Winther S, Westra J. et al. Diagnosing coronary artery disease after a positive coronary computed tomography angiography: the Dan-NICAD open label, parallel, head to head, randomized controlled diagnostic accuracy trial of cardiovascular magnetic resonance and myocardial perfusion scintigraphy. Eur Heart J Cardiovasc Imaging 2018; 19 (04) 369-377
- 93 Peper J, Schaap J, Kelder JC. et al. Added value of computed tomography fractional flow reserve in the diagnosis of coronary artery disease. Sci Rep 2021; 11 (01) 6748
- 94 Okonogi T, Kawasaki T, Koga H. et al. Comparison of Diagnostic Performance of Fractional Flow Reserve Derived from Coronary Computed Tomographic Angiography Versus Single-Photon Emission Computed Tomographic Myocardial Perfusion Imaging. Am J Cardiol 2021; 159: 36-43
- 95 Driessen RS, Danad I, Stuijfzand WJ. et al. Comparison of Coronary Computed Tomography Angiography, Fractional Flow Reserve, and Perfusion Imaging for Ischemia Diagnosis. J Am Coll Cardiol 2019; 73 (02) 161-173
- 96 Nørgaard BL, Gormsen LC, Bøtker HE. et al. Myocardial Perfusion Imaging Versus Computed Tomography Angiography-Derived Fractional Flow Reserve Testing in Stable Patients With Intermediate-Range Coronary Lesions: Influence on Downstream Diagnostic Workflows and Invasive Angiography Findings. J Am Heart Assoc 2017; 6 (08) e005587
- 97 Miyajima K, Motoyama S, Sarai M. et al. On-site assessment of computed tomography-derived fractional flow reserve in comparison with myocardial perfusion imaging and invasive fractional flow reserve. Heart Vessels 2020; 35 (10) 1331-1340
- 98 Pontone G, Baggiano A, Andreini D. et al. Dynamic Stress Computed Tomography Perfusion With a Whole-Heart Coverage Scanner in Addition to Coronary Computed Tomography Angiography and Fractional Flow Reserve Computed Tomography Derived. JACC Cardiovasc Imaging 2019; 12 (12) 2460-2471
- 99 Tanaka H, Takahashi T, Ohashi N. et al. Diagnostic value of thallium-201 myocardial perfusion IQ-SPECT without and with computed tomography-based attenuation correction to predict clinically significant and insignificant fractional flow reserve: A single-center prospective study. Medicine (Baltimore) 2017; 96 (51) e9275
- 100 Rønnow Sand NP, Nissen L, Winther S. et al. Prediction of Coronary Revascularization in Stable Angina: Comparison of FFRCT With CMR Stress Perfusion Imaging. JACC Cardiovasc Imaging 2020; 13 (04) 994-1004
- 101 Lossnitzer D, Klenantz S, Andre F. et al. Stable patients with suspected myocardial ischemia: comparison of machine-learning computed tomography-based fractional flow reserve and stress perfusion cardiovascular magnetic resonance imaging to detect myocardial ischemia. BMC Cardiovasc Disord 2022; 22 (01) 34
- 102 Guo W, Zhao S, Xu H. et al. Comparison of machine learning-based CT fractional flow reserve with cardiac MR perfusion mapping for ischemia diagnosis in stable coronary artery disease. Eur Radiol 2024; 34 (09) 5654-5665
- 103 Hlatky MA, Saxena A, Koo BK. et al. Projected costs and consequences of computed tomography-determined fractional flow reserve. Clin Cardiol 2013; 36 (12) 743-748
- 104 Kimura T, Shiomi H, Kuribayashi S. et al. Cost analysis of non-invasive fractional flow reserve derived from coronary computed tomographic angiography in Japan. Cardiovasc Interv Ther 2015; 30 (01) 38-44
- 105 Graby J, Metters R, Kandan SR. et al. Real-world clinical and cost analysis of CT coronary angiography and CT coronary angiography-derived fractional flow reserve (FFR(CT))-guided care in the National Health Service. Clin Radiol 2021; 76 (11) 862.e19-862.e28
- 106 Mittal TK, Hothi SS, Venugopal V. et al. The Use and Efficacy of FFR-CT: Real-World Multicenter Audit of Clinical Data With Cost Analysis. JACC Cardiovasc Imaging 2023; 16 (08) 1056-1065
- 107 Min JK, Koo BK, Erglis A. et al. Effect of image quality on diagnostic accuracy of noninvasive fractional flow reserve: results from the prospective multicenter international DISCOVER-FLOW study. Cardiovasc Comput Tomogr 2012; 6 (03) 191-199
- 108 Xu C, Yi Y, Xu M. et al. Diagnostic value of deep learning reconstruction-based subtraction CT-FFR in patients with calcified-related stenosis or stent implantation. Quant Imaging Med Surg 2025; 15 (02) 1599-1612
- 109 Tang CX, Guo BJ, Schoepf JU. et al. Feasibility and prognostic role of machine learning-based FFRCT in patients with stent implantation. Eur Radiol 2021; 31 (09) 6592-6604
- 110 Renker M, Schoepf UJ, Becher T. et al. Computed tomography in patients with chronic stable angina : Fractional flow reserve measurement. Herz 2017; 42 (01) 51-57
- 111 Lisi C, Moser LJ, Mergen V. et al. Increasing the rate of datasets amenable to CTFFR and quantitative plaque analysis: Value of software for reducing stair-step artifacts demonstrated in photon-counting detector CT. Eur J Radiol Open 2024; 12: 100574