Subscribe to RSS

DOI: 10.1055/a-2705-2083
Modified Halophyte Biochar for Congo red Removal: Adsorption and Neural Prediction
Authors
Funding Information DM has received financial research support from the Scheme of Developing High Quality Research (SHODH), File no. 202301642 and dated Jan 21, 2025.


Abstract
Adsorption is widely recognized as a reliable and cost-effective technique for the removal of dye pollutants from aqueous environments. This study investigates a novel adsorbent—ferrite composite of biochar (FCOB) for Congo red (CR) dye removal. It was synthesized by pyrolyzing Suaeda monoica leaf powder to obtain biochar, followed by base treatment to produce base-treated biochar, and subsequent coprecipitation with NiCuZnFe₂O₄ ferrite spinel. The XRD analysis of FCOB confirmed the successful incorporation of spinel NiCuZnFe2O4 into FCOB, as evidenced by the presence of two prominent characteristic peaks of the spinel structure. The SEM image revealed the irregular-crumpled structure of FCOB. BET analysis revealed the mesoporosity in FCOB, with a surface area of 44.64 ± 0.2396 m2 g−1. The optimum adsorption was achieved at a pH of 2, adsorbent dosage of 20 mg, initial CR concentration of 50 mg/L, contact time of 320 min, and temperature of 85 °C. The maximum CR dye removal percentage (R%) was 99.75%. At pH = 2, the strong electrostatic attraction between protonated FCOB adsorbent and anionic CR seemed to be the dominant adsorption mechanism. The adsorption data was best (R 2 = 0.99) described by the Redlich–Peterson isotherm model, indicating a heterogeneous surface with some degree of monolayer adsorption. The maximum adsorption capacity estimated from the Langmuir model was q max = 239.80 mg/g. The adsorption kinetics data was best described by pseudo-second-order model (R 2 = 0.99), suggesting that chemisorption is likely the rate-limiting step. The CR adsorption process was spontaneous and endothermic with ΔH° = 71.02 ± 1.41 kJ/mol. ANN analysis revealed that both BR and LM algorithms accurately predicted removal efficiency and adsorption capacity, achieving R values greater than 0.995. FCOB could also be regenerated and recycled up to 5 cycles retaining ≅65% removal efficiency for CR. Therefore, FCOB can serve as a biodegradable, cost-effective, nontoxic, and renewable adsorbent in treating CR-dye contaminated industrial wastewater, especially from textile and printing sectors.
Publication History
Received: 07 July 2025
Accepted after revision: 15 September 2025
Article published online:
14 October 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
Disha P. Mehta, Pragnesh N. Dave, Ruksana R. Sirach, Vijay V. Kumar. Modified Halophyte Biochar for Congo red Removal: Adsorption and Neural Prediction. Sustainability & Circularity NOW 2025; 02: a27052083.
DOI: 10.1055/a-2705-2083
-
References
- 1
Srivatsav P,
Bhargav BS,
Shanmugasundaram V,
Arun J,
Gopinath KP,
Bhatnagar A.
Water 2020; 12 (12) 3561
Reference Ris Wihthout Link
- 2
Goswami L,
Kushwaha A,
Kafle SR,
Kim B-S.
Catalysts 2022; 12 (08) 817
Reference Ris Wihthout Link
- 3
Sirach R,
Dave PN.
J Hazard Mater Adv 2023; 10: 100300
Reference Ris Wihthout Link
- 4 World population 2024 – StatisticsTimes.com https://statisticstimes.com/demographics/world-population.php (accessed June 25, 2024)
Reference Ris Wihthout Link
- 5
Zhong R,
Chen A,
Zhao D.
et al.
J Clean Prod 2023; 385: 135740
Reference Ris Wihthout Link
- 6 Water purification|Description, Processes, & Importance | Britannica https://www.britannica.com/topic/water-purification (accessed June 25, 2024)
Reference Ris Wihthout Link
- 7
Al-Tohamy R,
Ali SS,
Li F.
et al.
Ecotoxicol Environ Saf 2022; 231: 113160
Reference Ris Wihthout Link
- 8
Chequer FMD,
de Oliveira GAR,
Ferraz ERA.
et al.
Eco-Friendly Textile Dyeing and Finishing. IntechOpen; 2013
Reference Ris Wihthout Link
- 9
Teo SH,
Ng CH,
Islam A.
et al.
J Clean Prod 2022; 332: 130039
Reference Ris Wihthout Link
- 10
Sallam SA,
El-Subruiti GM,
Eltaweil AS.
Catal Lett 2018; 148 (12) 3701-3714
Reference Ris Wihthout Link
- 11
Gholami M,
Nasseri S,
Alizadehfard M-R,
Mesdaghinia A.
Water Qual Res J 2003; 38 (02) 379-391
Reference Ris Wihthout Link
- 12
Türgay O,
Ersöz G,
Atalay S,
Forss J,
Welander U.
Sep Purif Technol 2011; 79 (01) 26-33
Reference Ris Wihthout Link
- 13
Anantha MS,
Olivera S,
Hu C.
et al.
Environ Technol Innov 2020; 17: 100612
Reference Ris Wihthout Link
- 14
Joseph J,
Radhakrishnan RC,
Johnson JK,
Joy SP,
Thomas J.
Mater Chem Phys 2020; 242: 122488
Reference Ris Wihthout Link
- 15
Gadekar MR,
Ahammed MM.
Desalin Water Treat 2016; 57 (55) 26392-26400
Reference Ris Wihthout Link
- 16
Arciniega Cano O,
Rodríguez González CA,
Hernández Paz JF.
et al.
Catal Today 2017; 282: 168-173
Reference Ris Wihthout Link
- 17
Banu HAT,
Karthikeyan P,
Vigneshwaran S,
Meenakshi S.
Int J Biol Macromol 2020; 154: 188-197
Reference Ris Wihthout Link
- 18
Kathing C,
Saini G.
Recent Prog Mater 2022; 4 (04) 1-15
Reference Ris Wihthout Link
- 19
Patel F,
Patel P,
Patel N,
Patel S.
Color Removal from Dye Wastewater: A Review. 2014
Reference Ris Wihthout Link
- 20
Baskar AV,
Bolan N,
Hoang SA.
et al.
Sci Total Environ 2022; 822: 153555
Reference Ris Wihthout Link
- 21
Girish CR.
Int J Eng Technol 2018; 7: 330-334
Reference Ris Wihthout Link
- 22
Sutar S,
Jadhav J.
Bioresour Technol Rep 2024; 25: 101726
Reference Ris Wihthout Link
- 23 Environ Pollut 2023; 323: 121318
Reference Ris Wihthout Link
- 24
Perveen S,
Nadeem R,
Nosheen F,
Asjad MI,
Awrejcewicz J,
Anwar T.
Nanomaterials 2022; 12 (16) 2828
Reference Ris Wihthout Link
- 25
Zhang J,
Fu K,
Zhong S,
Luo J.
Environ Sci Technol 2025; 59 (07) 3603-3612
Reference Ris Wihthout Link
- 26
Rushdi IW,
Hardian R,
Rusidi RS.
et al.
Chem Eng J 2025; 510: 161595
Reference Ris Wihthout Link
- 27
Lafi R,
Montasser I,
Hafiane A.
Adsorpt Sci Technol. 2018
Reference Ris Wihthout Link
- 28
Wang J,
Tan Y,
Yang H,
Zhan L,
Sun G,
Luo L.
Sci Rep 2023; 13 (01) 21174
Reference Ris Wihthout Link
- 29
Ibraheem F,
Al-Zahrani A,
Mosa A.
Plants 2022; 11 (04) 537
Reference Ris Wihthout Link
- 30
Zein R,
Satrio Purnomo J,
Ramadhani P,
Safni,
Alif MF,
Putri CN.
Arab J Chem 2023; 16 (02) 104480
Reference Ris Wihthout Link
- 31
Tomczyk A,
Sokołowska Z,
Boguta P.
Rev Environ Sci Biotechnol 2020; 19 (01) 191-215
Reference Ris Wihthout Link
- 32
Panizio R,
Castro C,
Pacheco N.
et al.
Heliyon 2024; 10 (18) e37882
Reference Ris Wihthout Link
- 33
Norooz Oliaee J,
Dehghany M,
McKellar ARW,
Moazzen-Ahmadi N.
J Chem Phys 2011; 135 (04) 044315
Reference Ris Wihthout Link
- 34
Chermahini ME,
Ghiaci M,
Chermahini AN,
Shirvani M.
Heliyon 2024; 10: e38780
Reference Ris Wihthout Link
- 35
Li X,
Wang J,
Li S,
Li Z,
Zheng Z,
Zhang Y.
Pharmaceutics 2019; 11 (09) 469
Reference Ris Wihthout Link
- 36
Asker FW,
Mahamad ZZ,
Eliwei AG,
Nief OA.
Int J Appl Chem 2017; 13 (02) 169-177
Reference Ris Wihthout Link
- 37
Ngernyen Y,
Petsri D,
Sribanthao K,
Kongpennit K.
RSC Adv 2023; 13 (21) 14712-14728
Reference Ris Wihthout Link
- 38
Rabiei M,
Palevicius A,
Dashti A.
et al.
Materials 2020; 13 (19) 4380
Reference Ris Wihthout Link
- 39
Hassaan MA,
Yılmaz M,
Helal M,
El-Nemr MA,
Ragab S,
El Nemr A.
Sci Rep 2023; 13: 12724
Reference Ris Wihthout Link
- 40
Sadhana K,
Praveena K,
Bharadwaj S,
Murthy SR.
J Alloys Compd 2009; 472 (01/02) 484-488
Reference Ris Wihthout Link
- 41
Schneider P.
Appl Catal A Gen 1995; 129 (02) 157-165
Reference Ris Wihthout Link
- 42
Osterrieth JWM,
Rampersad J,
Madden D.
et al.
Adv Mater 2022; 34 (27) 2201502
Reference Ris Wihthout Link
- 43
Hua Z,
Pan Y,
Hong Q.
RSC Adv 2023; 13 (18) 12502-12508
Reference Ris Wihthout Link
- 44
Rápó E,
Tonk S.
Molecules 2021; 26 (17) 5419
Reference Ris Wihthout Link
- 45
Idan IJ,
Abdullah LC,
Choong TS,
Jamil SNABM.
Adsorpt Sci Technol 2018; 36 (01/02) 694-712
Reference Ris Wihthout Link
- 46
Sumanjit,
Rani S,
Mahajan RK.
Arab J Chem 2016; 9: S1464-S1477
Reference Ris Wihthout Link
- 47 dishamehta2307/ANN-training-dataset. https://github.com/dishamehta2307/ANN-training-dataset (accessed August 11, 2025)
Reference Ris Wihthout Link
- 48
Wang J,
Guo X.
Chemosphere 2020; 258: 127279
Reference Ris Wihthout Link
- 49
Emara AM,
Elsharma EM,
Abdelmonem IM.
J Radioanal Nucl Chem 2025; 334 (01) 227-237
Reference Ris Wihthout Link
- 50
Semwal N,
Mahar D,
Chatti M,
Dandapat A,
Chandra Arya M.
Heliyon 2023; 9 (11) e22027
Reference Ris Wihthout Link
- 51
Iqbal J,
Shah NS,
Sayed M.
et al.
J Hazard Mater 2021; 403: 123854
Reference Ris Wihthout Link
- 52
Faheem,
Du J,
Bao J,
Hassan MA,
Irshad S,
Talib MA.
Arab J Sci Eng 2019; 44 (12) 10127-10139
Reference Ris Wihthout Link
- 53
Rubangakene NO,
Elwardany A,
Fujii M,
Sekiguchi H,
Elkady M,
Shokry H.
Chem Eng Res Des 2023; 189: 636-651
Reference Ris Wihthout Link
- 54
Pandey D,
Daverey A,
Dutta K,
Arunachalam K.
Environ Monit Assess 2022; 194 (12) 880
Reference Ris Wihthout Link
- 55
Laxmi Deepak Bhatlu M,
Athira PS,
Jayan N,
Barik D,
Dennison MS.
Adsorpt Sci Technol 2023; 2023: e7369027
Reference Ris Wihthout Link
- 56
Jadhav SK,
Thorat SR.
Biosci Biotechnol Res Asia 2022; 19 (01) 141-151
Reference Ris Wihthout Link
- 57
Wijaya A,
Yuliasari N.
Indones J Mater Res 2023; 1 (01) 1-7
Reference Ris Wihthout Link
- 58
Elsherif KM,
Alkherraz AM,
Edwards H,
Abdulsalam Mutawia BY.
Environ Health Eng Manag 2024; 11 (03) 273-284
Reference Ris Wihthout Link
- 59
Dharmendra G,
Sahoo JK,
Hota A,
Sahoo SK.
ECS Trans 2022; 107 (01) 5127
Reference Ris Wihthout Link
- 60
Lakshmanan G,
Rajeshkannan C,
Kavitha A,
Mekala B,
Kamaladevi N.
J Pharmacogn Phytochem 2013; 2 (03) 49-152
Reference Ris Wihthout Link
- 61
Elhenawy Y,
Fouad K,
Bassyouni M,
Al-Qabandi OA,
Majozi T.
Energy Convers Manag: X 2024; 22: 100583
Reference Ris Wihthout Link
- 62
Ben Ali M,
Bakhtaoui Y,
Flayou M.
et al.
E3S Web Conf 2025; 601: 00087
Reference Ris Wihthout Link
- 63
Mehta D,
Dave PN,
Kumar VV.
Toxic Crystal Violet Dye Removal by Novel, Eco-Friendly Seablite Biochar–Ferrite Composite:
Adsorption Isotherm, Kinetics, and Artificial Neural Network. RSC Adv 2025; 15 (40) 33189-33208
Reference Ris Wihthout Link
- 64
Fito J,
Abewaa M,
Nkambule T.
Appl Water Sci 2023; 13 (03) 78
Reference Ris Wihthout Link
- 65
Ghaedi AM,
Vafaei A.
Adv Colloid Interf Sci 2017; 245: 20-39
Reference Ris Wihthout Link
- 66 Coconut husk-raw clay-Fe composite: preparation, characteristics and mechanisms of
Congo red adsorption | Scientific Reports. https://www.nature.com/articles/s41598-022-18763-y (accessed August 6, 2025)
Reference Ris Wihthout Link