Open Access
CC BY 4.0 · Sustainability & Circularity NOW 2025; 02: a27052083
DOI: 10.1055/a-2705-2083
Digitalisation and AI for Rational Chemical Design and Circular Economy
Original Article

Modified Halophyte Biochar for Congo red Removal: Adsorption and Neural Prediction

Authors

  • Disha P. Mehta

    1   Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, India
  • Pragnesh N. Dave

    1   Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, India
  • Ruksana R. Sirach

    1   Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, India
  • Vijay V. Kumar

    2   Department of Ecology, Gujarat Institute of Desert Ecology, Bhuj, India

Funding Information DM has received financial research support from the Scheme of Developing High Quality Research (SHODH), File no. 202301642 and dated Jan 21, 2025.


Graphical Abstract

Preview

Abstract

Adsorption is widely recognized as a reliable and cost-effective technique for the removal of dye pollutants from aqueous environments. This study investigates a novel adsorbent—ferrite composite of biochar (FCOB) for Congo red (CR) dye removal. It was synthesized by pyrolyzing Suaeda monoica leaf powder to obtain biochar, followed by base treatment to produce base-treated biochar, and subsequent coprecipitation with NiCuZnFe₂O₄ ferrite spinel. The XRD analysis of FCOB confirmed the successful incorporation of spinel NiCuZnFe2O4 into FCOB, as evidenced by the presence of two prominent characteristic peaks of the spinel structure. The SEM image revealed the irregular-crumpled structure of FCOB. BET analysis revealed the mesoporosity in FCOB, with a surface area of 44.64 ± 0.2396 m2 g−1. The optimum adsorption was achieved at a pH of 2, adsorbent dosage of 20 mg, initial CR concentration of 50 mg/L, contact time of 320 min, and temperature of 85 °C. The maximum CR dye removal percentage (R%) was 99.75%. At pH = 2, the strong electrostatic attraction between protonated FCOB adsorbent and anionic CR seemed to be the dominant adsorption mechanism. The adsorption data was best (R 2 = 0.99) described by the Redlich–Peterson isotherm model, indicating a heterogeneous surface with some degree of monolayer adsorption. The maximum adsorption capacity estimated from the Langmuir model was q max = 239.80 mg/g. The adsorption kinetics data was best described by pseudo-second-order model (R 2 = 0.99), suggesting that chemisorption is likely the rate-limiting step. The CR adsorption process was spontaneous and endothermic with ΔH° = 71.02 ± 1.41 kJ/mol. ANN analysis revealed that both BR and LM algorithms accurately predicted removal efficiency and adsorption capacity, achieving R values greater than 0.995. FCOB could also be regenerated and recycled up to 5 cycles retaining ≅65% removal efficiency for CR. Therefore, FCOB can serve as a biodegradable, cost-effective, nontoxic, and renewable adsorbent in treating CR-dye contaminated industrial wastewater, especially from textile and printing sectors.

Supplementary Material



Publication History

Received: 07 July 2025

Accepted after revision: 15 September 2025

Article published online:
14 October 2025

© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

Bibliographical Record
Disha P. Mehta, Pragnesh N. Dave, Ruksana R. Sirach, Vijay V. Kumar. Modified Halophyte Biochar for Congo red Removal: Adsorption and Neural Prediction. Sustainability & Circularity NOW 2025; 02: a27052083.
DOI: 10.1055/a-2705-2083
 
  • References

  • 1 Srivatsav P, Bhargav BS, Shanmugasundaram V, Arun J, Gopinath KP, Bhatnagar A. Water 2020; 12 (12) 3561
  • 2 Goswami L, Kushwaha A, Kafle SR, Kim B-S. Catalysts 2022; 12 (08) 817
  • 3 Sirach R, Dave PN. J Hazard Mater Adv 2023; 10: 100300
  • 4 World population 2024 – StatisticsTimes.com https://statisticstimes.com/demographics/world-population.php (accessed June 25, 2024)
  • 5 Zhong R, Chen A, Zhao D. et al. J Clean Prod 2023; 385: 135740
  • 6 Water purification|Description, Processes, & Importance | Britannica https://www.britannica.com/topic/water-purification (accessed June 25, 2024)
  • 7 Al-Tohamy R, Ali SS, Li F. et al. Ecotoxicol Environ Saf 2022; 231: 113160
  • 8 Chequer FMD, de Oliveira GAR, Ferraz ERA. et al. Eco-Friendly Textile Dyeing and Finishing. IntechOpen; 2013
  • 9 Teo SH, Ng CH, Islam A. et al. J Clean Prod 2022; 332: 130039
  • 10 Sallam SA, El-Subruiti GM, Eltaweil AS. Catal Lett 2018; 148 (12) 3701-3714
  • 11 Gholami M, Nasseri S, Alizadehfard M-R, Mesdaghinia A. Water Qual Res J 2003; 38 (02) 379-391
  • 12 Türgay O, Ersöz G, Atalay S, Forss J, Welander U. Sep Purif Technol 2011; 79 (01) 26-33
  • 13 Anantha MS, Olivera S, Hu C. et al. Environ Technol Innov 2020; 17: 100612
  • 14 Joseph J, Radhakrishnan RC, Johnson JK, Joy SP, Thomas J. Mater Chem Phys 2020; 242: 122488
  • 15 Gadekar MR, Ahammed MM. Desalin Water Treat 2016; 57 (55) 26392-26400
  • 16 Arciniega Cano O, Rodríguez González CA, Hernández Paz JF. et al. Catal Today 2017; 282: 168-173
  • 17 Banu HAT, Karthikeyan P, Vigneshwaran S, Meenakshi S. Int J Biol Macromol 2020; 154: 188-197
  • 18 Kathing C, Saini G. Recent Prog Mater 2022; 4 (04) 1-15
  • 19 Patel F, Patel P, Patel N, Patel S. Color Removal from Dye Wastewater: A Review. 2014
  • 20 Baskar AV, Bolan N, Hoang SA. et al. Sci Total Environ 2022; 822: 153555
  • 21 Girish CR. Int J Eng Technol 2018; 7: 330-334
  • 22 Sutar S, Jadhav J. Bioresour Technol Rep 2024; 25: 101726
  • 23 Environ Pollut 2023; 323: 121318
  • 24 Perveen S, Nadeem R, Nosheen F, Asjad MI, Awrejcewicz J, Anwar T. Nanomaterials 2022; 12 (16) 2828
  • 25 Zhang J, Fu K, Zhong S, Luo J. Environ Sci Technol 2025; 59 (07) 3603-3612
  • 26 Rushdi IW, Hardian R, Rusidi RS. et al. Chem Eng J 2025; 510: 161595
  • 27 Lafi R, Montasser I, Hafiane A. Adsorpt Sci Technol. 2018
  • 28 Wang J, Tan Y, Yang H, Zhan L, Sun G, Luo L. Sci Rep 2023; 13 (01) 21174
  • 29 Ibraheem F, Al-Zahrani A, Mosa A. Plants 2022; 11 (04) 537
  • 30 Zein R, Satrio Purnomo J, Ramadhani P, Safni, Alif MF, Putri CN. Arab J Chem 2023; 16 (02) 104480
  • 31 Tomczyk A, Sokołowska Z, Boguta P. Rev Environ Sci Biotechnol 2020; 19 (01) 191-215
  • 32 Panizio R, Castro C, Pacheco N. et al. Heliyon 2024; 10 (18) e37882
  • 33 Norooz Oliaee J, Dehghany M, McKellar ARW, Moazzen-Ahmadi N. J Chem Phys 2011; 135 (04) 044315
  • 34 Chermahini ME, Ghiaci M, Chermahini AN, Shirvani M. Heliyon 2024; 10: e38780
  • 35 Li X, Wang J, Li S, Li Z, Zheng Z, Zhang Y. Pharmaceutics 2019; 11 (09) 469
  • 36 Asker FW, Mahamad ZZ, Eliwei AG, Nief OA. Int J Appl Chem 2017; 13 (02) 169-177
  • 37 Ngernyen Y, Petsri D, Sribanthao K, Kongpennit K. RSC Adv 2023; 13 (21) 14712-14728
  • 38 Rabiei M, Palevicius A, Dashti A. et al. Materials 2020; 13 (19) 4380
  • 39 Hassaan MA, Yılmaz M, Helal M, El-Nemr MA, Ragab S, El Nemr A. Sci Rep 2023; 13: 12724
  • 40 Sadhana K, Praveena K, Bharadwaj S, Murthy SR. J Alloys Compd 2009; 472 (01/02) 484-488
  • 41 Schneider P. Appl Catal A Gen 1995; 129 (02) 157-165
  • 42 Osterrieth JWM, Rampersad J, Madden D. et al. Adv Mater 2022; 34 (27) 2201502
  • 43 Hua Z, Pan Y, Hong Q. RSC Adv 2023; 13 (18) 12502-12508
  • 44 Rápó E, Tonk S. Molecules 2021; 26 (17) 5419
  • 45 Idan IJ, Abdullah LC, Choong TS, Jamil SNABM. Adsorpt Sci Technol 2018; 36 (01/02) 694-712
  • 46 Sumanjit, Rani S, Mahajan RK. Arab J Chem 2016; 9: S1464-S1477
  • 47 dishamehta2307/ANN-training-dataset. https://github.com/dishamehta2307/ANN-training-dataset (accessed August 11, 2025)
  • 48 Wang J, Guo X. Chemosphere 2020; 258: 127279
  • 49 Emara AM, Elsharma EM, Abdelmonem IM. J Radioanal Nucl Chem 2025; 334 (01) 227-237
  • 50 Semwal N, Mahar D, Chatti M, Dandapat A, Chandra Arya M. Heliyon 2023; 9 (11) e22027
  • 51 Iqbal J, Shah NS, Sayed M. et al. J Hazard Mater 2021; 403: 123854
  • 52 Faheem, Du J, Bao J, Hassan MA, Irshad S, Talib MA. Arab J Sci Eng 2019; 44 (12) 10127-10139
  • 53 Rubangakene NO, Elwardany A, Fujii M, Sekiguchi H, Elkady M, Shokry H. Chem Eng Res Des 2023; 189: 636-651
  • 54 Pandey D, Daverey A, Dutta K, Arunachalam K. Environ Monit Assess 2022; 194 (12) 880
  • 55 Laxmi Deepak Bhatlu M, Athira PS, Jayan N, Barik D, Dennison MS. Adsorpt Sci Technol 2023; 2023: e7369027
  • 56 Jadhav SK, Thorat SR. Biosci Biotechnol Res Asia 2022; 19 (01) 141-151
  • 57 Wijaya A, Yuliasari N. Indones J Mater Res 2023; 1 (01) 1-7
  • 58 Elsherif KM, Alkherraz AM, Edwards H, Abdulsalam Mutawia BY. Environ Health Eng Manag 2024; 11 (03) 273-284
  • 59 Dharmendra G, Sahoo JK, Hota A, Sahoo SK. ECS Trans 2022; 107 (01) 5127
  • 60 Lakshmanan G, Rajeshkannan C, Kavitha A, Mekala B, Kamaladevi N. J Pharmacogn Phytochem 2013; 2 (03) 49-152
  • 61 Elhenawy Y, Fouad K, Bassyouni M, Al-Qabandi OA, Majozi T. Energy Convers Manag: X 2024; 22: 100583
  • 62 Ben Ali M, Bakhtaoui Y, Flayou M. et al. E3S Web Conf 2025; 601: 00087
  • 63 Mehta D, Dave PN, Kumar VV. Toxic Crystal Violet Dye Removal by Novel, Eco-Friendly Seablite Biochar–Ferrite Composite: Adsorption Isotherm, Kinetics, and Artificial Neural Network. RSC Adv 2025; 15 (40) 33189-33208
  • 64 Fito J, Abewaa M, Nkambule T. Appl Water Sci 2023; 13 (03) 78
  • 65 Ghaedi AM, Vafaei A. Adv Colloid Interf Sci 2017; 245: 20-39
  • 66 Coconut husk-raw clay-Fe composite: preparation, characteristics and mechanisms of Congo red adsorption | Scientific Reports. https://www.nature.com/articles/s41598-022-18763-y (accessed August 6, 2025)