RSS-Feed abonnieren
DOI: 10.1055/a-2713-7589
Environmentally Benign Atroposelective Synthesis of Fluorinated Oxindole–Coumarin Hybrid Structures
Autoren
Funding Information We gratefully acknowledge financial support from the US National Institutes of Health (GM106260).

Abstract
The significance of multifunctional compounds exhibiting prevalent pharmacophores in the health sciences and increasingly tight manufacturing regulations demand synthetic methods that give efficient access to such scaffolds without resorting to hazardous solvents or additives, expensive reagents or catalysts, and at minimum energy consumption, preferably by avoiding time-consuming and wasteful work-up procedures. Herein, a base-promoted method that produces atropisomeric structures with high diastereoselectivities from fluorooxindoles and 4-chloro-3-nitrocoumarins via dechlorinative Csp2–Csp3 bond formation is described. The reaction occurs under environmentally benign conditions with readily available triethylamine in isopropyl alcohol at room temperature within 1 h. The oxindole–coumarin adducts are obtained in high yields and dr’s up to 37:1 without the need for chromatographic purification.
Publikationsverlauf
Eingereicht: 20. August 2025
Angenommen nach Revision: 30. September 2025
Accepted Manuscript online:
30. September 2025
Artikel online veröffentlicht:
29. Oktober 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Kaur N, Dhawan RK, Singh B. Int J Rec Res Life Sci 2020; 7: 26
- 2 Wang T, Hoon DL, Lu Y. Chem Commun 2015; 51: 10186
- 3 Chen X, Li Y, Zhao J, Zheng B, Lu Q, Ren X. Adv Synth Catal 2017; 359: 3057
- 4 Zhu Y, Mei H, Han J, Soloshonok VA, Zhou J, Pan Y. J Org Chem 2017; 82: 13663
- 5 Jin Y, Chen M, Ge S, Hartwig JF. Org Lett 2017; 19: 1390
- 6 Paladhi S, Park S, Yang JW, Song CE. Org Lett 2017; 19: 5336
- 7 Balaraman K, Wolf C. Angew Chem Int Ed 2017; 56: 1390
- 8 Zhu Y, Mao Y, Mei H. et al. Chem Eur J 2018; 24: 8994
- 9 Hajra S, Hazra A, Mandal P. Org Lett 2018; 20: 6471
- 10 Zhao J, Li Y, Chen L-Y, Ren X. J Org Chem 2019; 84: 5099
- 11 Li B-Y, Lin Y, Du D-M. J Org Chem 2019; 84: 11752
- 12 Qiu Z-B, Chen L-Y, Ji J, Ren X, Li Y. J Fluorine Chem 2020; 236: 109594
- 13 Butcher TW, Amberg WM, Hartwig JF. Angew Chem Int Ed 2022; 61: e202112251
- 14 Liu Y-L, Wang X-P, Wei J, Li Y. Org Biomol Chem 2022; 20: 538
- 15 Bouda M, Bertke JA, Wolf C. J Org Chem 2024; 89: 6100
- 16 Wijekoona S, Gunasekarab C, Palliyagurua L, Fernandob N, Jayaweeraa P, Kumarasinghe U. Asian J Green Chem 2022; 6: 297
- 17 Rajarathinam B, Kumaravel K. RSC Adv 2016; 6: 73848
- 18 Moskowitz M, Balaraman K, Wolf C. J Org Chem 2018; 83: 1661
- 19 Khursheed A, Jain V. J Nat Prod 2021; 11: 648
- 20 Fiorito S, Taddeo VA, Genovese S, Epifano F. Tetrahedron Lett 2016; 57: 4795
- 21 Molnar M, Lončarić M, Kovač M. Curr Org Chem 2020; 24: 4
- 22 Ghomi JS, Akbarzadeh Z. Ultrason Sonochem 2018; 40: 78
- 23 Zhang H-H, Li T-Z, Liu S-J, Shi F. Angew Chem Int Ed 2024; 63: e202311053
- 24 Wang L, Li S, Blümel M. et al. Angew Chem Int Ed 2016; 55: 11110
- 25 Yamanomoto K, Yamamoto K, Yoshida S, Sato S, Akiyama T. Chem Commun 2024; 60: 582
- 26 Yang Y, Wu C, Xing J, Dou X. J Am Chem Soc 2024; 146: 6283
- 27 Zhang Z, Simon MM, Yu S. et al. J Am Chem Soc 2024; 146: 9172
- 28 Ye B, Su L, Zheng K, Gao S, Liu J. Angew Chem Int Ed 2025; 64: e202413949
- 29 Xu D, Zhou G, Liu B, Jia S, Liu Y, Yan H. Angew Chem Int Ed 2025; 64: e202416873
- 30 Ma C, Sheng F, Wang H. et al. J Am Chem Soc 2020; 142: 15686
- 31 Zhan W, Hu J, Chen X, Luo G, Song X. Chem Commun 2024; 60: 14984
- 32 He S, Shen B, Zuo L. et al. J Am Chem Soc 2024; 146: 19137
- 33 Weng C, Liu L, Sun M. et al. Angew Chem Int Ed 2024; e202418254
- 34 Tang X, Tang Y, Peng J. et al. J Am Chem Soc 2024; 146: 26639
- 35 Xiao Y, Zhao Z, Irran E, Oestreich M. Angew Chem Int Ed 2024; 63: e202414005
- 36 Gao Y, Liu Z, Tian S. et al. Angew Chem Int Ed 2024; e202418888
- 37 Du Y, Lu Q, Cui Y. et al. Angew Chem Int Ed 2024; e202421060
- 38 Wang Y, Liu W, Li T. et al. J Am Chem Soc 2024; 146: 33804
- 39 Zhang J, Zhang Y, Huang Y. Chem Int Ed 2025; 64: e202413102
- 40 Ye B, Su L, Zheng K, Gao S, Liu J. Angew Chem Int Ed 2025; 64: e202413949
- 41 Liu X, Hu Z, Duan M, Chenga D. Adv Synth Catal 2025; 367: e202401553
- 42 Li T, Shi L, Zhao X. et al. Org Lett 2023; 25: 5191-5196
- 43 Bouda M, Hana GE, Xhili D, Sripada A, Bertke JA, Wolf C. Chem Commun 2025; 61: 7883
- 44a Representative example of the atroposelective synthesis procedure
- 44b N-Phenyl-3-fluoro-2-oxindole (20.5 mg, 0.09 mmol), 4-chloro-7-methoxy-3-nitrocoumarin (23.0 mg, 0.09 mmol), and triethylamine (0.2 mL, 1.5 mmol) were combined and isopropyl alcohol (0.8 mL) was added. The resulting mixture was stirred at 25 °C for 1 h. Upon completion, the solvent was removed under vacuum and the residue was extracted with ethyl acetate and water. The combined organic layers were dried over sodium sulfate and concentrated to isolate 4i (35.7 mg, 0.08 mmol) as a yellow crystalline solid in 91% yield. The dr was determined as 7:1 using 19F NMR spectroscopy. 1H NMR (400 MHz, CD3CN) δ 7.72–7.63 (m, 3H), 7.62–7.54 (m, 4H), 7.30 (m, 1H), 7.11 (d, J = 9.2 Hz, 1H), 7.07–7.01 (m, 2H), 6.93 (dd, J = 9.1, 2.6 Hz, 1H), 3.87 (s, 3H). 13C{1H} NMR (100 MHz, CD3CN) δ 167.92, 167.71, 164.47, 157.34–153.08 (m), 144.54, 134.09 (d, J = 4.5 Hz), 132.75, 130.14, 130.06, 129.41, 126.98 (d, J = 2.7 Hz), 126.79, 126.53, 125.96, 125.09 (d, J = 3.8 Hz), 123.18, 114.48, 111.92 (d, J = 2.8 Hz), 106.38 (d, J = 4.8 Hz), 102.08, 92.33 (d, J = 187.1 Hz), 56.16. 19F NMR (376 MHz, CD3CN) δ −146.55. HR-MS (ESI-TOF) m/z: [M+Na]+ calcd for C24H15FN2O6 469.0806, found 469.0807. Melting point range: 191–196 °C
- 44c Atroposelective Synthesis at 1.0 mmol scale
- 44d N-Phenyl-3-fluoro-2-oxindole (227.0 mg, 1.0 mmol), 4-chloro-3-nitrocoumarin (225.0 mg, 1.0 mmol), and triethylamine (0.2mL, 1.5 mmol) were combined in a vial and isopropyl alcohol (0.8 mL) was added. The resulting mixture was stirred at 25 °C for 1 h. Upon completion, the solvent was removed under vacuum and the remaining residue was extracted with ethyl acetate and water. The combined organic layers were dried over sodium sulfate and concentrated to isolate 3b (378.5 mg, 0.9 mmol) as a white crystalline solid in 91% yield. The dr was determined as 20:1 using 19F NMR spectroscopy. The 1H and 19F NMR spectra were in agreement with the literature.43