RSS-Feed abonnieren
DOI: 10.1055/a-2720-9415
Alkoxy Group-Boosted Internal Redox Reaction: Application to Benzylic Hydride Shift/Cyclization of Electron-Deficient Aromatic Rings
Autoren

Abstract
We report a C(sp3)–H bond functionalization at the benzylic position of electron-deficient aromatic rings, considered a challenging transformation in hydride shift–mediated C(sp3)–H bond functionalization chemistry. The key to achieving the reaction was the employment of substrates having a methoxy group at the benzylic position. The methoxy group was easily eliminated from the cyclized adducts by treating with a strong Brønsted acid, such as TfOH. A one-pot operation of two processes, C(sp3)–H bond functionalization and MeOH elimination, was also accomplished. Synthetic utility of the present method was well showcased by derivatization from the obtained dihydronaphthalenes.
Keywords
C–H bond functionalization - Redox process - Tetralin - Hydride shift - Sequential reactionPublikationsverlauf
Eingereicht: 11. September 2025
Angenommen nach Revision: 10. Oktober 2025
Accepted Manuscript online:
10. Oktober 2025
Artikel online veröffentlicht:
26. November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Godula K, Sames D. Science 2006; 312: 67
- 1b Bergman RG. Nature 2007; 446: 391
- 1c Alberico D, Scott ME, Lautens M. Chem Rev 2007; 107: 174
- 1d Davies HML, Manning JR. Nature 2008; 451: 417
- 1e Chen X, Engle KM, Wang D-H, Yu J-Q. Angew Chem Int Ed 2009; 48: 5094
- 1f Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Chem Eur J 2010; 16: 2654
- 1g Lyons TW, Sanford MS. Chem Rev 2010; 110: 1147
- 1h Davies HML, Du Bois J, Yu J-Q. Chem Soc Rev 2011; 40: 1855
- 1i Brückl T, Baxter RD, Ishihara Y, Baran PS. Acc Chem Res 2012; 45: 826
- 1j Qin Y, Lv J, Luo S. Tetrahedron Lett 2014; 55: 551
- 1k Davies HML, Morton DJ. Org Chem 2016; 81: 343
- 1l Hu X-Q, Chen J-R, Xiao W-J. Angew Chem Int Ed 2017; 56: 1960
- 2a Tobisu M, Chatani N. Angew Chem Int Ed 2006; 45: 1683
- 2b Peng B, Maulide N. Chem Eur J 2013; 19: 13274
- 2c Wang L, Xiao J. Adv Synth Catal 2014; 356: 1137
- 2d Haibach MC, Seidel D. Angew Chem Int Ed 2014; 53: 5010
- 2e Kwon SJ, Kim DY. Chem Rec 2016; 16: 1191
- 2f An X-D, Xiao J. Org Chem Front 2021; 8: 1364
- 2g Mori K. Bull Chem Soc Jpn 2022; 95: 296
- 2h Wang L, Xiao J. Org Chem Front 2022; 9: 5041
- 2i Mori K, Okawa H. Tetrahedron Lett 2022; 110: 154178
- 2j Shen Y-B, Hu F, Li S-S. Tetrahedron 2022; 127: 133089
- 3a Pastine SJ, McQuaid KM, Sames D. J Am Chem Soc 2005; 127: 12180
- 3b Zhang C, Kanta De C, Mal R, Seidel D. J Am Chem Soc 2008; 130: 416
- 3c McQuaid KM, Sames D. J Am Chem Soc 2009; 131: 402
- 3d Shinkai D, Murase H, Hata T, Urabe H. J Am Chem Soc 2009; 131: 3166
- 3e Vadola PA, Sames D. J Am Chem Soc 2009; 131: 16525
- 3f Zhou G, Zhang J. Chem Commun 2010; 46: 6593
- 3g Jurberg ID, Peng B, Wöstefeld E, Wasserloos M, Maulide N. Angew Chem Int Ed 2012; 51: 1950
- 3h Sugiishi T, Nakamura H. J Am Chem Soc 2012; 134: 2504
- 3i Vadola PA, Carrea I, Sames D. J Org Chem 2012; 77: 6689
- 3j Alajarin M, Bonillo B, Marin-Luna M, Sanchez-Andrada P, Vidal A. Chem Eur J 2013; 19: 16093
- 3k Richer MT, Breugst M, Platonova AY. et al. J Am Chem Soc 2014; 136: 6123
- 3l Shen Y-B, Li L-F, Xiao M-Y, Yang J-M, Liu Q, Xiao J. J Org Chem 2019; 84: 13935
- 3m Vargáné DS, Wang L-X, Tóth L. et al. Molecules 2020; 25: 1265
- 3n Shen Y-B, Wang L-X, Sun Y-M. et al. J Org Chem 2020; 85: 1915
- 3o Hu F, Li X, Ding Z. et al. ACS Catal 2022; 12: 943
- 3p Liu H, Quan Y, Xie L, Xie X. Front Chem 2022; 10: 840934
- 3q An X-D, Shao D-Y, Qiu B, Xiao J. Org Lett 2023; 25: 2432
- 3r Hu F, Sun Z, Pan M. et al. Green Chem 2023; 25: 5134
- 3s An X-D, Shao D-Y, Qiu B, Xiao J. Org Lett 2023; 25: 2432
- 3t Hu F, Sun Z, Pan M. et al. Green Chem 2023; 25: 5134
- 3u Dong Y, Hu F, Wu H. et al. Org Lett 2024; 26: 332
- 3v Shen Y-B, Zhuang Q-H, Wang X-L. et al. Green Chem 2024; 26: 11899
- 3w Shen Y-B, Wang X-L, Zhuang Q-H. et al. Org Chem Front 2025; 12: 591
- 3x Shao D-Y, Qiu B, Wang Z-K, Liu Z-Y, Xiao J, An X-D. Green Synth Catal 2025; 6: 123
- 4a Murarka S, Deb I, Zhang C, Seidel D. J Am Chem Soc 2009; 131: 13226
- 4b Kang YK, Kim SM, Kim DY. J Am Chem Soc 2010; 132: 11847
- 4c Cao W, Liu X, Wang W, Lin L, Feng X. Org Lett 2011; 13: 600
- 4d Zhou G, Liu F, Zhang J. Chem Eur J 2011; 17: 3101
- 4e He Y-P, Du Y-L, Luo S-W, Gong LZ. Tetrahedron Lett 2011; 52: 7064
- 4f Chen L, Zhang L, Lv Z, Cheng J-P, Luo S. Chem Eur J 2012; 18: 8891
- 4g Zhang L, Chen L, Lv Z, Cheng J-P, Luo S. Chem Asian J 2012; 7: 2569
- 4h Jiao Z-W, Zhang S-Y, He C. et al. Angew Chem Int Ed 2012; 51: 8811
- 4i Kang YK, Kim DY. Adv Synth Catal 2013; 355: 3131
- 4j Suh CW, Woo SB, Kim DY, Asian J. Org Chem 2014; 3: 399
- 4k Kang YK, Kim DY. Chem Commun 2014; 50: 222
- 4l Suh CW, Kim DY. Org Lett 2014; 16: 5374
- 4m Yu J, Li N, Chen D-F, Luo S-W. Tetrahedron Lett 2014; 55: 2859
- 4n Cao W, Liu X, Guo J, Lin L, Feng X. Chem Eur J 2015; 21: 1632
- 4o Li J, Preinfalk A, Malide N. J Am Chem Soc 2019; 141: 143 See also, ref 6b
- 5a Yoshida T, Mori K. Chem Commun 2018; 54: 12686
- 5b Tamura R, Kitamura E, Tustsumi R, Yamanaka M, Akiyama T, Mori K. Org Lett 2019; 21: 2383
- 5c Otawa Y, Mori K. Chem Commun 2019; 55: 13856
- 5d Yokoo K, Mori K. Org Lett 2020; 22: 244
- 5e Hoshino D, Mori K. Org Lett 2021; 23: 9403
- 5f Okawa H, Kawasaki-Takasuka T, Mori K. Org Lett 2024; 26: 1662
- 5g Koyama R, Anada M, Sueki S. et al. Chem Commun 2024; 60: 3822
- 5h Koyama R, Anada M, Sueki S. et al. Tetrahedron Chem 2025; 100138
- 6a Mori K, Kurihara K, Yabe S, Yamanaka M, Akiyama T. J Am Chem Soc 2014; 136: 3744
- 6b Mori K, Isogai R, Kamei Y, Yamanaka M, Akiyama T. J Am Chem Soc 2018; 140: 6203
- 6c Mori K, Umehara N, Akiyama T. Chem Sci 2018; 9: 7327
- 6d Kataoka M, Otawa Y, Ido N, Mori K. Org Lett 2019; 21: 9334
- 6e Yokoo K, Sakai D, Mori K. Org Lett 2020; 22: 5801
- 6f Nakamura I, Anada M, Sueki S, Makino K, Mori K. Adv Synth Catal 2023; 365: 502
- 6g Zhou X-L, Yeung C-T, Chan WTK, Law G-L. Adv Synth Catal 2022; 364: 732
- 6h Yamagishi R, Anada M, Sueki S. et al. Org Lett 2025; 27: 1961
- 7 Mori K, Sueoka S, Akiyama T. Chem Lett 2018; 40: 1386
- 8a Mahoney SJ, Moon DT, Hollinger J, Fillion E. Tetrahedron Lett 2009; 50: 4705
- 8b Mori K, Sueoka S, Akiyama T. J Am Chem Soc 2011; 133: 2424
- 8c Yoshida T, Mori K. Chem Commun 2017; 53: 4319
- 8d Matsui W, Matsuno T, Takiguchi I. et al. Org Lett 2025; 27: 6198
- 9 Yokoo K, Mori K. Chem Commun 2018; 54: 6927
- 10a Mori A, Maruoka K, Yamamoto H. Tetrahedron Lett 1984; 25: 4421
- 10b Murata S, Suzuki M, Noyori R. J Am Chem Soc 1980; 102: 3248
- 10c Noyori R, Murata S, Suzuki M. Tetrahedron 1981; 37: 3899
- 11 Detailed examination of the reaction conditions from 2a was described in SI.
- 12 Simultaneous treatment of 1a with Sc(OTf)3 (0.5 mol%) and TfOH (5 mol%) in refluxing DCE for 21 h resulted in the formation of 3a in only 14%, accompanied by 2a (57%) and 6 (30). This result clearly indicates the importance of sequential operation.
- 13 Unpublished result.
- 14 Amano K, Kawasaki-Takasuka T, Mori K. Org Lett 2024; 36: 1824
For recent reviews on C–H activation, see:
See also, highlight on visible-light photocatalysis:
For recent reviews on internal redox process, see:
For selected examples of the internal redox reactions, see:
For examples of the enantioselective internal redox reactions, see:
For selected recent examples of internal redox reaction developed by our group, see:
For the double C(sp3)–H bond functionalization by sequential utilization of the internal redox reaction, see:
See, also:
Related benzylic hydride shift/cyclization prosess, see:
Related ether-oxygen (ketal/acetal-oxygen) selective reactions, see: