Subscribe to RSS

DOI: 10.1055/a-2744-2506
Electric-Field-Assisted Organic Synthesis: A New Frontier in Reactivity Control
Authors
H.C. and G.C. thank the School of Chemistry, Cardiff University for support. J.W. thanks the Institute for Basic Science in Korea for financial support (IBS-R10-A1). J.W. also acknowledges financial support through a KAIST (Korea Advanced Institute of Science and Technology) scholarship. R.L.M. would like to thank the Leverhulme Trust for a Philip Leverhulme Prize (PLP-2022-106).

Abstract
The application of oriented external electric fields (OEEFs) to modulate chemical reactivity—termed electric field catalysis—is emerging as a powerful strategy in synthetic chemistry. Inspired by nature’s use of internal fields in enzymatic systems, this approach offers the potential to control reaction pathways, improve selectivity, and reduce energy input. While the theoretical foundations are robust, practical implementation remains challenging, particularly due to difficulties in generating stable, precisely oriented fields at the molecular scale. Recent advances, however, are addressing these obstacles. Notably, the use of multiwalled carbon nanotubes (MWCNTs), owing to their nanoscale architecture, electrical conductivity, and chemical robustness, has enabled the creation of electromicrofluidic devices capable of delivering localised electric fields with high spatial precision. Collaborative efforts, including those by the Matile group and our own, demonstrate the viability of these platforms in catalysis. These developments mark a significant step toward the broader adoption of electric-field-assisted synthesis in organic chemistry.
Key words
catalysis - electromicrofluidic devices - molecular transformations - multiwalled carbon nanotubes - oriented electric fieldsPublication History
Received: 27 September 2025
Accepted after revision: 07 November 2025
Accepted Manuscript online:
11 November 2025
Article published online:
02 December 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Shaik S. ACS Phys. Chem. Au 2024; 4: 191
- 1b Bofill JM, Severi M, Quapp W, Ribas Ariño J, de P R Moreira I, Albareda G. Chem. Eur. J. 2024; 30: e202400173
- 1c Kareem S, Vali SR, Reddy BV. S. Eur. J. Org. Chem. 2023; 26: e202300103
- 1d Van Lommel R, Verschueren RH, De Borggraeve WM, De Vleeschouwer F, Stuyver T. Org. Lett. 2022; 24: 1
- 1e Ciampi S, Darwish N, Aitken HM, Díez-Pérez I, Coote ML. Chem. Soc. Rev. 2018; 47: 5146
- 2a Siddiqui SA, Stuyver T, Shaik S, Dubey KD. JACS Au 2023; 3: 3259
- 2b Ji Z, Boxer SG. J. Am. Chem. Soc. 2022; 144: 22289
- 2c Welborn VV, Head-Gordon T. Chem. Rev. 2019; 119: 6613
- 3a Westendorff KS, Hülsey MJ, Wesley TS, Román-Leshkov Y, Surendranath Y. Science 2024; 383: 757
- 3b Li J, Xia Y, Song X, Chen B, Zare RN. Proc. Natl. Acad. Sci. 2024; 121: e2318408121
- 3c Sevim S, Sanchis-Gual R, Franco C, Aragonès AC, Darwish N, Kim D, Picca RA, Nelson BJ, Ruiz E, Pané S, Díez-Pérez I, Puigmartí-Luis J. Nat. Commun. 2024; 15: 790
- 3d Gong M, Wu Q, Kim JK, Huang M, Li Y, Wu Y, Kim JS. Sci. China Chem. 2024; 67: 1263
- 3e Zhu C, Pham LN, Yuan X, Ouyang H, Coote ML, Zhang X. J. Am. Chem. Soc. 2023; 45: 21207
- 3f Zhang B, Schaack C, Prindle CR, Vo EA, Aziz M, Steigerwald ML, Berkelbach TC, Nuckolls C, Venkataraman L. Chem. Sci. 2023; 14: 1769
- 3g Song Z, Liang C, Gong K, Zhao S, Yuan X, Zhang X, Xie J. J. Am. Chem. Soc. 2023; 145: 26003
- 4a Bornhof A.-B, Vázquez-Nakagawa M, Rodríguez-Pérez L, Herranz M. Á, Sakai N, Martín N, Matile S, López-Andarias J. Angew. Chem. Int. Ed. 2019; 58: 16097
- 4b Campisciano V, Gruttadauria M, Giacalone F. ChemCatChem 2019; 11: 90
- 4c Blanco M, Nieto-Ortega B, de Juan A, Vera-Hidalgo M, López-Moreno A, Casado S, González LR, Sawada H, González-Calbet JM, Pérez EM. Nat. Commun. 2018; 9: 2671
- 4d Tasis D, Tagmatarchis N, Bianco A, Prato M. Chem. Rev. 2006; 106: 1105
- 5 Gutiérrez López M. Á, Ali R, Tan M.-L, Sakai N, Wirth T, Matile S. Sci. Adv. 2023; 9: eadj5502
- 6a Warshel A, Levitt M. J. Mol. Biol. 1976; 103: 227
- 6b Warshel A, Sharma PK, Kato M, Xiang Y, Liu H, Olsson MH. M. Chem. Rev. 2006; 106: 3210
- 6c Warshel A. J. Biol. Chem. 1998; 273: 27035
- 6d Joy J, Stuyver T, Shaik S. J. Am. Chem. Soc. 2020; 142: 3836
- 6e Shaik S, Danovich D, Joy J, Wang Z, Stuyver T. J. Am. Chem. Soc. 2020; 142: 12551
- 6f Shaik S, de Visser SP, Kumar D. J. Am. Chem. Soc. 2004; 126: 11746
- 6g Long Z, Kelly HR, Videla PE, Menzel JP, Lian T, Kubiak CP, Batista VS. J. Phys. Chem. Lett. 2025; 16: 2881
- 7a Shaik S, Ramanan R, Danovich D, Mandal D. Chem. Soc. Rev. 2018; 47: 5125
- 7b Shaik S, Mandal D, Ramanan R. Nat. Chem. 2016; 8: 1091
- 7c Grimme S, Kruse H, Goerigk L, Erker G. Angew. Chem. Int. Ed. 2010; 49: 1402
- 7d Meir R, Chen H, Lai W, Shaik S. ChemPhysChem 2010; 11: 301
- 8a Aragonès AC, Haworth NL, Darwish N, Ciampi S, Bloomfield NJ, Wallace GG, Diez-Perez I, Coote ML. Nature 2016; 531: 88
- 8b Stone IB, Starr RL, Hoffmann N, Wang X, Evans AM, Nuckolls C, Lambert TH, Steigerwald ML, Berkelbach TC, Roy X, Venkataraman L. Chem. Sci. 2022; 13: 10798
- 8c Huang X, Tang C, Li J, Chen L.-C, Zheng J, Zhang P, Le J, Li R, Li X, Liu J, Yang Y, Shi J, Chen Z, Bai M, Zhang H.-L, Xia H, Cheng J, Tian Z.-Q, Hong W. Sci. Adv. 2019; 5: 6
- 8d Borca B, Michnowicz T, Pétuya R, Pristl M, Schendel V, Pentegov I, Kraft U, Klauk H, Wahl P, Gutzler R, Arnau A, Schlickum U, Kern K. ACS Nano 2017; 11: 4703
- 8e Zang Y, Zou Q, Fu T, Ng F, Fowler B, Yang J, Li H, Steigerwald ML, Nuckolls C, Venkataraman L. Nat. Commun. 2019; 10: 4482
- 8f Tang C, Stuyver T, Lu T, Liu J, Ye Y, Gao T, Lin L, Zheng J, Liu W, Shi J, Shaik S, Xia H, Hong W. Nat. Commun. 2023; 14: 3657
- 8g Alemani M, Peters MV, Hecht S, Rieder KH, Moresco F, Grill L. J. Am. Chem. Soc. 2006; 128: 14446
- 8h Sreelakshmi PA, Mahashaya R, Leitherer S, Rashid U, Hamill JM, Nair M, Rajamalli P, Kaliginedi V. J. Am. Chem. Soc. 2024; 146: 35242
- 8i Dief EM, Low PJ, Díez-Pérez I, Darwish N. Nat. Res. 2023; 56: 600
- 8j Chen H, Jia C, Zhu X, Yang C, Guo X, Stoddart JF. Nat. Res. 2023; 8: 165
- 9a Wang Y, Zhang J, Zhang W, Yao J, Liu J, He H, Gu C, Gao G, Jin X. Angew. Chem. Int. Ed. 2024; 63: e202402440
- 9b Gorin CF, Beh ES, Kanan MW. J. Am. Chem. Soc. 2012; 134: 186
- 9c Gorin CF, Beh ES, Bui QM, Dick GR, Kanan MW. J. Am. Chem. Soc. 2013; 135: 11257
- 9d Li X, Nong X, Zhu C, Gao X, Chen H, Yuan X, Xing D, Liu L, Liang C, Zang D, Zhang X. J. Am. Chem. Soc. 2024; 146: 29267
- 9e Gu Y, Xia Q, Liu B, Zhao Y, Pu L, Ding J, Liu Y, Li E, Vecitis CD, Gao G. Environ. Sci. Technol. 2024; 58: 20277
- 9f Li E, Li Z, Zhu H, Xia Q, Pan Z, Xu Z, Gao G, Guan G, Cheng F. Sep. Purif. Technol. 2025; 372: 133559
- 9g Tang Q, Sanchis-Gual R, Qin N, Ye H, Sevim S, Veciana A, Corral-Casas C, Thodkar K, Wu J, Nelson BJ, Díez-Pérez I, Chen X.-Z, Gattinoni C, Puigmartí-Luis J, Pané S, Franco C. J. Am. Chem. Soc. 2025; 147: 8289
- 9h Wang Y, Xu Y, Dong S, Wang P, Chen W, Lu Z, Ye D, Pan B, Wu D, Vecitis CD, Gao G. Nat. Commun. 2021; 12: 3508
- 10a Morozov YG, Belousova OV, Kuznetsov MV, Ortega D, Parkin IP. J. Mater. Chem. 2012; 22: 11214
- 10b Zhou Q, Zhang J, Saba T, Yue Z, Li W, Anderson JA, Wang X. ACS Sustainable Chem. Eng. 2019; 7: 1271
- 10c Gonzalo-Juan I, Escribano JA, Castro Y, Sanchez-Herencia AJ, Fierro JL. G, Ferrari B. Green Chem. 2014; 16: 3286
- 10d Venta K, Wanunu M, Drndić M. Nano Lett. 2013; 13: 423
- 10e Liu P, Yang S, Fang M, Luo X, Cai W. Nanoscale 2011; 3: 3933
- 11 Akamatsu M, Sakai N, Matile S. J. Am. Chem. Soc. 2017; 139: 6558
- 12 Jozeliūnaitė A, Guo S.-Y, Sakai N, Matile S. Angew. Chem. Int. Ed. 2025; 64: e202417333