References and Notes
<A NAME="RS06508ST-1">1 </A>
Kita M.
Kondo M.
Koyama T.
Yamada K.
Matsumoto T.
Lee KH.
Woo JT.
Uemura D.
J. Am. Chem. Soc.
2004,
126:
4794
<A NAME="RS06508ST-2">2 </A>
Rowan R.
Powers DA.
Science
1991,
251:
1348
RANKL induces osteoclast-like multinucleated
cell formation in cultures of bone marrow cells. See:
<A NAME="RS06508ST-3A">3a </A>
Yasuda H.
Shima N.
Nakagawa N.
Yamaguchi K.
Kiosaki M.
Mochizuki S.-i.
Tomoyasu A.
Yano K.
Goto M.
Murakami A.
Tsuda E.
Morinaga T.
Higashio K.
Udagawa N.
Takahashi N.
Suda T.
Proc. Natl. Acad. Sci. U. S. A.
1998,
95:
3597
<A NAME="RS06508ST-3B">3b </A>
Lancey DL.
Timms E.
Tan HL.
Kelley MJ.
Dunstan CR.
Burgess T.
Elliott R.
Colombero A.
Elliott G.
Scully S.
Hsu H.
Sullivan J.
Hawkins N.
Davy E.
Capparelli C.
Eli A.
Qian YX.
Kaufman S.
Sarosi I.
Shalhoub V.
Senaldi G.
Guo J.
Delaney J.
Boyle WJ.
Cell
1998,
93:
165
<A NAME="RS06508ST-3C">3c </A>
Hsu H.
Lacey DL.
Dunstan CR.
Solovyev I.
Colombero A.
Timms E.
Tan H.-L.
Elliott G.
Kelley MJ.
Sarosi I.
Wang L.
Xia X.-Z.
Elliott R.
Chiu L.
Black T.
Scully S.
Capparelli C.
Morony S.
Shimamoto G.
Bass MB.
Boyle WJ.
Proc. Natl. Acad. Sci.
U. S. A.
1999,
96:
3540
<A NAME="RS06508ST-4A">4a </A>
Kita M.
Uemura D.
Chem.
Lett.
2005,
34:
454
<A NAME="RS06508ST-4B">4b </A>
Kita M.
Ohishi N.
Washida K.
Kondo M.
Koyama T.
Yamada K.
Uemura D.
Bioorg. Med.
Chem.
2005,
13:
5253
Reported total syntheses of symbioimine,
see:
<A NAME="RS06508ST-5A">5a </A>
Varseev GN.
Maier ME.
Angew.
Chem. Int. Ed.
2006,
45:
4767
<A NAME="RS06508ST-5B">5b </A>
Zou Y.
Che Q.
Snider BB.
Org.
Lett.
2006,
24:
5605
<A NAME="RS06508ST-5C">5c </A>
Kim J.
Thomson RJ.
Angew. Chem. Int.
Ed.
2007,
46:
3104
For other synthetic studies, see:
<A NAME="RS06508ST-5D">5d </A>
Snider BB.
Che Q.
Angew. Chem.
Int. Ed.
2006,
45:
932
<A NAME="RS06508ST-5E">5e </A>
Sakai E.
Araki K.
Takamura H.
Uemura D.
Tetrahedron Lett.
2006,
47:
6343
For our own efforts along with 2,3-dihydropyridine strategy,
see:
<A NAME="RS06508ST-5F">5f </A>
Born S.
Kobayashi Y.
Synlett
2008,
2479
<A NAME="RS06508ST-6A">6a </A>
Gras J.-L.
Bertrand M.
Tetrahedron
Lett.
1979,
4549
<A NAME="RS06508ST-6B">6b </A>
Gras J.-L.
J.
Org. Chem.
1981,
46:
3738
<A NAME="RS06508ST-6C">6c </A>
Taber
DF.
Kong S.
Malcolm SC.
J. Org. Chem.
1998,
63:
7953
<A NAME="RS06508ST-6D">6d </A>
Coe JW.
Roush WR.
J. Org. Chem.
1989,
54:
915
<A NAME="RS06508ST-6E">6e </A>
Frankowski KJ.
Golden JE.
Zeng Y.
Lei Y.
Aubé J.
J. Am. Chem. Soc.
2008,
130:
6018
<A NAME="RS06508ST-7">7 </A> Sammakia showed an interesting method
to prepare an octalone core structure of dihydrocompactin, see:
Sammakia T.
Johns DM.
Kim G.
Berliner MA.
J.
Am. Chem. Soc.
2005,
127:
6504
Preparation of (E )-6-iodohex-5-en-1-ol:
<A NAME="RS06508ST-8A">8a </A>
Lipshutz BH.
Kell R.
Ellsworth EL.
Tetrahedron Lett.
1990,
31:
7257
<A NAME="RS06508ST-8B">8b </A>
Nishida A.
Shirato F.
Nakagawa M.
Tetrahedron: Asymmetry
2000,
11:
3789
<A NAME="RS06508ST-9">9 </A> Synthesis of pinacolboronate:
Shirakawa K.
Arase A.
Hoshi M.
Synthesis
2004,
1814
<A NAME="RS06508ST-10A">10a </A>
More JD.
Finney NS.
Org.
Lett.
2002,
4:
3001
<A NAME="RS06508ST-10B">10b </A>
Frigerio M.
Santagostino M.
Sputore S.
J.
Org. Chem.
1999,
64:
4537
<A NAME="RS06508ST-11">11 </A> Preparation of β-ketophosphonate:
Hosokawa S.
Seki M.
Fukuda H.
Tatsuta K.
Tetrahedron
Lett.
2006,
47:
2439
Attempted Diels-Alder
reaction of 11 under conventional conditions:
<A NAME="RS06508ST-12A">12a </A>
xylene, reflux, 2 d,
and
<A NAME="RS06508ST-12B">12b </A>
MeAlCl2 , CH2 Cl2 , -78 ˚C.
<A NAME="RS06508ST-13">13 </A>
Microwave instrument: CEM Discovery
Labmate microwave system.
<A NAME="RS06508ST-14">14 </A>
Microwave-assisted heating of 11 in ethanol provided the Diels-Alder
adducts 12a and 12b in
69% with exo /endo = 1:2.
<A NAME="RS06508ST-15">15 </A>
The minor diastereomer was assumed
to be the exo -adduct. We do not exclude
the possibility of epimerization of the major kinetic endo -adduct 14 to
the minor exo -adduct under the reaction
conditions.
<A NAME="RS06508ST-16">16 </A>
As expected, the bulky dienophile
below did not afford any Diels-Alder adduct even under
the microwave-assisted heating conditions. The starting material
was recovered quantitatively (Scheme
[8 ]
).
Scheme 8
<A NAME="RS06508ST-17">17 </A>
¹
H NMR and
¹³
C NMR Data for Compounds 11, 12a,b, and 14
Compound 11 : ¹ H NMR (400 MHz,
CDCl3 ): δ = 6.78
(q, J = 11.2,
6.4 Hz, 1 H), 6.70 (dd, J = 11.2,
16.0 Hz, 1 H), 6.51 (d, J = 2.4
Hz, 2 H), 6.35 (d, J = 15.6
Hz, 1 H), 6.32 (t, J = 2.4
Hz, 1 H), 6.18 (dd, J = 15.6,
10.4 Hz, 1 H), 6.02 (dd, J = 16.0,
1.6 Hz, 1 H), 5.78 (dt, J = 14.4,
7.2 Hz, 1 H), 3.77 (s, 6 H), 2.54 (t, J = 7.2
Hz, 2 H), 2.48-2.38 (m, 1 H), 2.16 (dt, J = 13.6,
6.4 Hz, 2 H), 1.74 (app q, J = 8.0
Hz, 2 H), 1.04 (d, J = 6.8
Hz, 6 H). ¹³ C NMR (100 MHz, CDCl3 ): δ = 200.8,
160.8 (2 C), 153.4, 139.5, 135.1, 131.1, 130.3, 129.7, 127.5, 104.1
(2 C), 99.6, 55.3 (2 C), 32.2, 31.1, 23.6, 21.3 (2 C). Compound 12a (exo ): ¹ H
NMR (400 MHz, CDCl3 ): δ = 6.44 (d, J = 2.0 Hz,
2 H), 6.35 (t, J = 2.4
Hz 1 H), 5.83 (ddd, J = 6.8,
4.8, 1.6 Hz, 1 H), 5.64 (dt, J = 9.6,
1.6 Hz, 1 H), 3.77 (s, 6 H), 3.45-3.38 (m, 1 H), 2.62 (app
t, J = 10.8
Hz, 1 H), 2.56-2.34 (m, 3 H), 2.25-2.02 (m, 4
H), 1.84-1.58 (m, 2 H), 0.69 (d, J = 7.2
Hz, 3 H), 0.43 (d, J = 7.2
Hz, 3 H). ¹³ C NMR (100 MHz, CDCl3 ): δ = 212.6,
160.3 (2 C), 144.6, 131.0, 129.5, 108.6 (2 C), 97.8, 55.3 (2 C),
51.8, 45.6, 43.9, 43.2, 42.1, 33.0, 28.2, 27.0, 19.5, 19.0. Compound 12b (endo ): ¹ H
NMR (400 MHz, CDCl3 ): δ = 6.34
(d, J = 2.0
Hz, 2 H), 6.30 (t, J = 1.6
Hz, 1 H), 5.70 (ddd, J = 10.0,
5.2, 2.8 Hz, 1 H), 5.47 (d, J = 9.6
Hz, 1 H), 3.77 (s, 6 H), 3.15 (dd, J = 10.0,
2.4 Hz 1 H), 2.62 (dd, J = 11.2,
4.8 Hz, 1 H), 2.52 (dt, J = 12.8,
6.0 Hz, 1 H), 2.45-2.41 (m, 1 H), 2.31-2.26 (m,
2 H), 2.05 (ddd, J = 12.4,
5.2, 3.2 Hz, 1 H), 1.89 (dd, J = 13.2,
3.6 Hz, 1 H), 1.80-1.60 (m, 3 H), 0.79 (d, J = 7.2 Hz,
3 H), 0.75 (d, J = 7.6
Hz, 3 H). ¹³ C NMR (100 MHz,
CDCl3 ): δ = 215.6,
160.7 (2 C), 147.8, 131.5, 128.6, 106.8 (2 C), 97.6, 55.2 (2 C),
52.9, 46.0, 43.1, 40.3, 40.0, 29.4, 29.0, 26.6, 19.9. Compound 14 : ¹ H NMR (400 MHz,
CDCl3 ): δ = 6.32
(d, J = 2.4
Hz, 2 H), 6.30 (t, J = 2.4
Hz, 1 H), 5.87 (ddd, J = 10.0,
4.8, 2.4 Hz, 1 H), 5.70 (dd, J = 10.4,
1.6 Hz, 1 H), 3.75 (s, 6 H), 3.38 (ddd, J = 11.2,
6.0, 2.4 Hz, 1 H), 2.70 (ddd, J = 13.2,
5.2, 3.2 Hz, 1 H), 2.48-2.40 (m, 1 H), 2.31-2.27
(m, 2 H), 2.04-1.96 (m, 1 H), 1.92-1.83 (m, 2
H), 1.76 (dd, J = 13.2,
11.2 Hz 1 H), 1.66-1.55 (m, 2 H). ¹³ C
NMR (100 MHz, CDCl3 ): δ = 214.4,
160.8 (2 C), 147.6, 130.9, 129.8, 105.3 (2 C), 98.0, 55.2 (2 C),
50.2, 43.1, 38.5, 37.2, 32.1, 28.3, 24.8.