RSS-Feed abonnieren
DOI: 10.1055/s-0028-1083539
Tandem Aza-Michael-Condensation-Aldol Cyclization Reaction: Approach to the Construction of DE Synthon of (±)-Camptothecin
Publikationsverlauf
Publikationsdatum:
15. Oktober 2008 (online)

Abstract
An efficient synthesis of the DE ring of camptothecin, employing a Reformatsky and a tandem one-pot, three-step transformation involving aza-Michael reaction, condensation with ethyl malonyl chloride followed by intramolecular ‘aldol’ reaction to furnish the dihydropyridone derivative from commercially available starting materials, has been achieved.
Key words
natural products - alkaloids - antitumor - Aldol cyclizations - Reformatsky reaction
- 1
Wall ME.Wani MC.Cook CE.Palmer KH.MacPhail AT.Sim GA. J. Am. Chem. Soc. 1966, 88: 3888 -
2a
Hecht SM.Newman DJ.Kingston DGI. J. Nat. Prod. 2000, 63: 1273 -
2b
Das B.Madhusudan P.Reddy PV.Anita Y. Indian J. Chem., Sect. B 2001, 40: 453 -
2c
Kitajima M.Yoshida S.Yamagata K.Nakamura M.Takayama H.Saito K.Seki H.Aimi N. Tetrahedron 2002, 58: 9169 -
2d
Puri SC.Verma V.Amna T.Quzi GN.Spiteller M. J. Nat. Prod. 2005, 68: 1717 -
3a
Hsiang YH.Hertzberg R.Hecht SM.Liu LF. J. Biol. Chem. 1985, 260: 14873 -
3b
Khon KW.Pommier Y. Ann. N. Y. Acad. Sci. 2000, 922: 11 -
3c
Staker BL.Hjerrild K.Feese MD.Behnke CA.Burgin AB.Stewart L. Proc. Natl. Acad. Sci. U. S. A. 2002, 99: 15387 - 4
Kingsbury WD.Boehm JC.Jakas DR.Holden KG.Hecht SM.Gallagher G.Caranfa MJ.McCabe FL.Faucette LF.Johnson RK.Hertzberg RP. J. Med. Chem. 1991, 34: 98 -
5a
Negoro S.Fukuoka M.Masuda N.Takada M.Kusunoki Y.Matsui K.Takifuji N.Kudoh S.Niitani H.Taguchi T. J. Natl. Cancer Inst. 1991, 83: 1164 -
5b
Kawato Y.Aonuma M.Hirata Y.Kuga H.Sato K. Cancer Res. 1991, 51: 4187 - 6
Priel E.Showalter SD.Blair DG. AIDS Res. Hum. Retroviruses 1991, 7: 65 -
7a
Cragg GM.Newman DJ. J. Nat. Prod. 2004, 67: 232 -
7b
Butler MS. J. Nat. Prod. 2005, 22: 162 - For reviews on camptothecin and its derivatives, see:
-
8a
Hutchison CR. Tetrahedron 1981, 37: 1047 -
8b
Wall ME.Wani MC. In The Alkaloids Vol. 50:Cordell GA. Academic Press; San Diego CA: 1998. Chap. 13. p.509 -
8c
Du W. Tetrahedron 2003, 59: 8649 ; and references cited therein -
8d
Twin H.Batey RA. Org. Lett. 2004, 6: 4913 -
8e
Yu J.Depne J.Kronenthal D. Tetrahedron Lett. 2004, 45: 7247 -
8f
Thomas OP.Dumas C.Zaparucha A.Husson HP. Eur. J. Org. Chem. 2004, 5: 1128 -
8g
Rahier NJ.Cheng K.Gao R.Eisenhauser BM.Hecht SM. Org. Lett. 2005, 7: 835 -
8h
Anderson RJ.Raolji GB.Kanazawa A.Greene AE. Org. Lett. 2005, 7: 2989 -
8i
Brunin T.Hénichart J.-P.Rigo B. Tetrahedron 2005, 61: 7916 -
8j
Tangirala RS.Dixon R.Yang D.Ambrus A.Antony S.Agama K.Pommier Y.Curran DP. Bioorg. Med. Chem. Lett. 2005, 15: 4736 -
8k
Li Q.-Y.Zu Y.-G.Shi R.-Z.Yao L.-P. Curr. Med. Chem. 2006, 13: 2021 -
8l
Tang C.-J.Babijak M.Anderson RJ.Greene AE.Kanazawa A. Org. Biomol. Chem. 2006, 4: 3757 -
8m
Tangirala RS.Antony S.Agama S.Pommier Y.Anderson BD.Bevins R.Curran DP. Bioorg. Med. Chem. 2006, 14: 6202 -
8n
Elban MA.Sun W.Eisenhauer BM.Gao R.Hecht SM. Org. Lett. 2006, 16: 3513 -
8o
Brumin T.Legentil L.Henichart J.-P.Rigo B. Tetrahedron 2006, 62: 3959 -
8p
Dai W.Petersen JL.Wang KK. Org. Lett. 2006, 8: 4665 -
8q
Xiao X.Antony S.Pommier Y.Cushman M. J. Med. Chem. 2006, 49: 1408 -
8r
Peters R.Althaus M.Nagy A.-L. Org. Biomol. Chem. 2006, 4: 498 -
8s
Hiroya K.Kawamoto K.Sakamoto T. Synlett 2006, 2636 -
8t
Peters R.Althaus M.Nagy AL. Org. Biomol. Chem. 2006, 4: 498 -
8u
Zhou HB.Liu GS.Yao ZJ. Org. Lett. 2007, 9: 2003 -
9a
Chavan SP.Venkatraman MS. Tetrahedron Lett. 1998, 39: 6745 -
9b
Chavan SP.Sivappa R. Tetrahedron Lett. 2004, 45: 3113 -
9c
Chavan SP.Pasupathy K.Venkatraman MS.Kale RR. Tetrahedron Lett. 2004, 45: 6879 -
9d
Chavan SP.Sivappa R. Tetrahedron Lett. 2004, 45: 3941 -
9e
Chavan SP.Venkatraman MS. Arkivoc 2005, 165 -
9f
Chavan SP.Pathak AB.Kalkote UR. Tetrahedron Lett. 2007, 48: 6561 -
9g
Chavan SP.Pathak AB.Kalkote UR. Synlett 2007, 2635 - 10
Ram RN.Charles I. Tetrahedron 1997, 53: 7335 - 11
Su J.Qiu G.Liang S.Hu X. Synth. Commun. 2005, 35: 1427 - 12
Rapoport H.Tang CSF.Morrow CJ. J. Am. Chem. Soc. 1975, 97: 159 - 13
Comins DL.Hao H.Saha JK.Gao J. J. Org. Chem. 1994, 59: 5120
References and Notes
All compounds were characterized by
IR, ¹H NMR,
¹³C
NMR, and MS analysis.
Spectral Data
Compound 8: ¹H NMR (200 MHz,
CDCl3): δ = 0.90 (t, J = 7.4
Hz, 3 H), 1.24 (t, J = 7.1
Hz, 3 H), 1.40 (t, J = 7.3
Hz, 3 H), 1.70-1.81 (m, 1 H), 1.92-2.04 (m, 1
H), 3.5 (t, J = 7.4 Hz,
1 H), 4.13 (q, J = 7.1,
2 H), 4.45 (q, J = 7.3
Hz, 2 H), 5.09 (d, J = 14.4
Hz, 1 H), 5.17 (d, J = 14.4
Hz, 1 H), 6.28 (d, J = 7.2
Hz, 1 H), 7.24 (d, J = 7.2
Hz, 1 H), 7.29-7.35 (s, 5 H).
Compound 9: ¹H NMR (200 MHz,
CDCl3): δ = 0.92 (t, J = 7.4
Hz, 3 H), 1.26 (t, J = 7.2
Hz, 3 H), 1.35 (t, J = 7.3
Hz, 3 H), 1.51-1.71 (m, 2 H), 1.82-1.96 (m, 1
H), 2.21-2.50 (m, 1 H), 3.22-3.42 (m, 2 H), 3.60-3.73
(m, 1 H), 4.15 (q, J = 7.2
Hz, 2 H), 4.36 (q, J = 7.3
Hz, 2 H), 4.49 (d, J = 14.7 Hz,
1 H), 4.66 (d, J = 14.7
Hz, 1 H), 7.24-7.30 (m, 5 H).
Compound 14: ¹H NMR (200 MHz,
CDCl3): δ = 0.96 (t, J = 7.4
Hz, 3 H), 1.24 (t, J = 7.1
Hz, 3 H), 1.60-1.77 (m,
1 H), 1.92-2.10
(m, 1 H), 4.13 (q, J = 7.1
Hz, 2 H), 4.96 (t, J = 7.3
Hz, 1 H), 5.13 (s, 2 H), 6.30 (d, J = 7.2
Hz, 1 H), 7.42 (d, J = 7.2
Hz, 1 H), 7.31-7.38 (m, 5 H), 10.52 (s, 1 H).
Compound 6: ¹H NMR (400 MHz;
CD3OD): δ = 0.93 (t, J = 7.3
Hz, 3 H), 1.86 (q, J = 7.2
Hz, 2 H), 5.22 (d, J = 16.2 Hz,
1 H), 5.41 (d, J = 16.2
Hz, 1 H), 6.63 (d, J = 6.8
Hz,
1 H), 7.46 (d, J = 6.8
Hz, 1 H).
Typical Procedure
for Compound 9
To a stirred solution of keto compound 10 (5 g, 29.4 mmol) in dry CH2Cl2 benzyl
amine (3.21 mL, 29.4 mmol) was added dropwise at r.t. and allowed
to stir for 20 min. After the completion of the reaction (TLC),
K2CO3 (14.2 g, 102.9 mmol) was added followed
by dropwise addition of ethyl malonyl chloride (4.89 mL, 38.22 mmol)
at 0 ˚C. The mixture was stirred at r.t. until
completion (1 h, TLC), and then was filtered, and the residue was
washed with CH2Cl2 (3 × 30
mL). The organic layer was washed with H2O, brine, dried
over anhyd Na2SO4, filtered, and concentrated
on a rotary evaporator under diminished pressure. The resulting residue
was purified by flash column chromatography (silica gel) using EtOAc-PE
(3:7) as an eluent, affording the dihydropyridone 9 as
a colorless liquid (7.6 g, 70% yield).