Synlett 2008(18): 2781-2784  
DOI: 10.1055/s-0028-1083539
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Tandem Aza-Michael-Condensation-Aldol Cyclization Reaction: Approach to the Construction of DE Synthon of (±)-Camptothecin

Subhash P. Chavan*, Abasaheb N. Dhawane, Uttam R. Kalkote
Division of Organic Chemistry, National Chemical Laboratory, Pune 411008, India
e-Mail: sp.chavan@ncl.res.in;
Further Information

Publication History

Received 12 April 2008
Publication Date:
15 October 2008 (online)

Abstract

An efficient synthesis of the DE ring of camptothecin, employing a Reformatsky and a tandem one-pot, three-step transformation involving aza-Michael reaction, condensation with ethyl malonyl chloride followed by intramolecular ‘aldol’ reaction to furnish the dihydropyridone derivative from commercially available starting materials, has been achieved.

    References and Notes

  • 1 Wall ME. Wani MC. Cook CE. Palmer KH. MacPhail AT. Sim GA. J. Am. Chem. Soc.  1966,  88:  3888 
  • 2a Hecht SM. Newman DJ. Kingston DGI. J. Nat. Prod.  2000,  63:  1273 
  • 2b Das B. Madhusudan P. Reddy PV. Anita Y. Indian J. Chem., Sect. B  2001,  40:  453 
  • 2c Kitajima M. Yoshida S. Yamagata K. Nakamura M. Takayama H. Saito K. Seki H. Aimi N. Tetrahedron  2002,  58:  9169 
  • 2d Puri SC. Verma V. Amna T. Quzi GN. Spiteller M. J. Nat. Prod.  2005,  68:  1717 
  • 3a Hsiang YH. Hertzberg R. Hecht SM. Liu LF. J. Biol. Chem.  1985,  260:  14873 
  • 3b Khon KW. Pommier Y. Ann. N. Y. Acad. Sci.  2000,  922:  11 
  • 3c Staker BL. Hjerrild K. Feese MD. Behnke CA. Burgin AB. Stewart L. Proc. Natl. Acad. Sci. U. S. A.  2002,  99:  15387 
  • 4 Kingsbury WD. Boehm JC. Jakas DR. Holden KG. Hecht SM. Gallagher G. Caranfa MJ. McCabe FL. Faucette LF. Johnson RK. Hertzberg RP. J. Med. Chem.  1991,  34:  98 
  • 5a Negoro S. Fukuoka M. Masuda N. Takada M. Kusunoki Y. Matsui K. Takifuji N. Kudoh S. Niitani H. Taguchi T. J. Natl. Cancer Inst.  1991,  83:  1164 
  • 5b Kawato Y. Aonuma M. Hirata Y. Kuga H. Sato K. Cancer Res.  1991,  51:  4187 
  • 6 Priel E. Showalter SD. Blair DG. AIDS Res. Hum. Retroviruses  1991,  7:  65 
  • 7a Cragg GM. Newman DJ. J. Nat. Prod.  2004,  67:  232 
  • 7b Butler MS. J. Nat. Prod.  2005,  22:  162 
  • For reviews on camptothecin and its derivatives, see:
  • 8a Hutchison CR. Tetrahedron  1981,  37:  1047 
  • 8b Wall ME. Wani MC. In The Alkaloids   Vol. 50:  Cordell GA. Academic Press; San Diego CA: 1998.  Chap. 13. p.509 
  • 8c Du W. Tetrahedron  2003,  59:  8649 ; and references cited therein
  • 8d Twin H. Batey RA. Org. Lett.  2004,  6:  4913 
  • 8e Yu J. Depne J. Kronenthal D. Tetrahedron Lett.  2004,  45:  7247 
  • 8f Thomas OP. Dumas C. Zaparucha A. Husson HP. Eur. J. Org. Chem.  2004,  5:  1128 
  • 8g Rahier NJ. Cheng K. Gao R. Eisenhauser BM. Hecht SM. Org. Lett.  2005,  7:  835 
  • 8h Anderson RJ. Raolji GB. Kanazawa A. Greene AE. Org. Lett.  2005,  7:  2989 
  • 8i Brunin T. Hénichart J.-P. Rigo B. Tetrahedron  2005,  61:  7916 
  • 8j Tangirala RS. Dixon R. Yang D. Ambrus A. Antony S. Agama K. Pommier Y. Curran DP. Bioorg. Med. Chem. Lett.  2005,  15:  4736 
  • 8k Li Q.-Y. Zu Y.-G. Shi R.-Z. Yao L.-P. Curr. Med. Chem.  2006,  13:  2021 
  • 8l Tang C.-J. Babijak M. Anderson RJ. Greene AE. Kanazawa A. Org. Biomol. Chem.  2006,  4:  3757 
  • 8m Tangirala RS. Antony S. Agama S. Pommier Y. Anderson BD. Bevins R. Curran DP. Bioorg. Med. Chem.  2006,  14:  6202 
  • 8n Elban MA. Sun W. Eisenhauer BM. Gao R. Hecht SM. Org. Lett.  2006,  16:  3513 
  • 8o Brumin T. Legentil L. Henichart J.-P. Rigo B. Tetrahedron  2006,  62:  3959 
  • 8p Dai W. Petersen JL. Wang KK. Org. Lett.  2006,  8:  4665 
  • 8q Xiao X. Antony S. Pommier Y. Cushman M. J. Med. Chem.  2006,  49:  1408 
  • 8r Peters R. Althaus M. Nagy A.-L. Org. Biomol. Chem.  2006,  4:  498 
  • 8s Hiroya K. Kawamoto K. Sakamoto T. Synlett  2006,  2636 
  • 8t Peters R. Althaus M. Nagy AL. Org. Biomol. Chem.  2006,  4:  498 
  • 8u Zhou HB. Liu GS. Yao ZJ. Org. Lett.  2007,  9:  2003 
  • 9a Chavan SP. Venkatraman MS. Tetrahedron Lett.  1998,  39:  6745 
  • 9b Chavan SP. Sivappa R. Tetrahedron Lett.  2004,  45:  3113 
  • 9c Chavan SP. Pasupathy K. Venkatraman MS. Kale RR. Tetrahedron Lett.  2004,  45:  6879 
  • 9d Chavan SP. Sivappa R. Tetrahedron Lett.  2004,  45:  3941 
  • 9e Chavan SP. Venkatraman MS. Arkivoc  2005,  165 
  • 9f Chavan SP. Pathak AB. Kalkote UR. Tetrahedron Lett.  2007,  48:  6561 
  • 9g Chavan SP. Pathak AB. Kalkote UR. Synlett  2007,  2635 
  • 10 Ram RN. Charles I. Tetrahedron  1997,  53:  7335 
  • 11 Su J. Qiu G. Liang S. Hu X. Synth. Commun.  2005,  35:  1427 
  • 12 Rapoport H. Tang CSF. Morrow CJ. J. Am. Chem. Soc.  1975,  97:  159 
  • 13 Comins DL. Hao H. Saha JK. Gao J. J. Org. Chem.  1994,  59:  5120 
14

All compounds were characterized by IR, ¹H NMR, ¹³C NMR, and MS analysis.
Spectral Data
Compound 8: ¹H NMR (200 MHz, CDCl3): δ = 0.90 (t, J = 7.4 Hz, 3 H), 1.24 (t, J = 7.1 Hz, 3 H), 1.40 (t, J = 7.3 Hz, 3 H), 1.70-1.81 (m, 1 H), 1.92-2.04 (m, 1 H), 3.5 (t, J = 7.4 Hz, 1 H), 4.13 (q, J = 7.1, 2 H), 4.45 (q, J = 7.3 Hz, 2 H), 5.09 (d, J = 14.4 Hz, 1 H), 5.17 (d, J = 14.4 Hz, 1 H), 6.28 (d, J = 7.2 Hz, 1 H), 7.24 (d, J = 7.2 Hz, 1 H), 7.29-7.35 (s, 5 H).
Compound 9: ¹H NMR (200 MHz, CDCl3): δ = 0.92 (t, J = 7.4 Hz, 3 H), 1.26 (t, J = 7.2 Hz, 3 H), 1.35 (t, J = 7.3 Hz, 3 H), 1.51-1.71 (m, 2 H), 1.82-1.96 (m, 1 H), 2.21-2.50 (m, 1 H), 3.22-3.42 (m, 2 H), 3.60-3.73 (m, 1 H), 4.15 (q, J = 7.2 Hz, 2 H), 4.36 (q, J = 7.3 Hz, 2 H), 4.49 (d, J = 14.7 Hz, 1 H), 4.66 (d, J = 14.7 Hz, 1 H), 7.24-7.30 (m, 5 H).
Compound 14: ¹H NMR (200 MHz, CDCl3): δ = 0.96 (t, J = 7.4 Hz, 3 H), 1.24 (t, J = 7.1 Hz, 3 H), 1.60-1.77 (m,
1 H), 1.92-2.10 (m, 1 H), 4.13 (q, J = 7.1 Hz, 2 H), 4.96 (t, J = 7.3 Hz, 1 H), 5.13 (s, 2 H), 6.30 (d, J = 7.2 Hz, 1 H), 7.42 (d, J = 7.2 Hz, 1 H), 7.31-7.38 (m, 5 H), 10.52 (s, 1 H).
Compound 6: ¹H NMR (400 MHz; CD3OD): δ = 0.93 (t, J = 7.3 Hz, 3 H), 1.86 (q, J = 7.2 Hz, 2 H), 5.22 (d, J = 16.2 Hz, 1 H), 5.41 (d, J = 16.2 Hz, 1 H), 6.63 (d, J = 6.8 Hz,
1 H), 7.46 (d, J = 6.8 Hz, 1 H).

15

Typical Procedure for Compound 9
To a stirred solution of keto compound 10 (5 g, 29.4 mmol) in dry CH2Cl2 benzyl amine (3.21 mL, 29.4 mmol) was added dropwise at r.t. and allowed to stir for 20 min. After the completion of the reaction (TLC), K2CO3 (14.2 g, 102.9 mmol) was added followed by dropwise addition of ethyl malonyl chloride (4.89 mL, 38.22 mmol) at 0 ˚C. The mixture was stirred at r.t. until completion (1 h, TLC), and then was filtered, and the residue was washed with CH2Cl2 (3 × 30 mL). The organic layer was washed with H2O, brine, dried over anhyd Na2SO4, filtered, and concentrated on a rotary evaporator under diminished pressure. The resulting residue was purified by flash column chromatography (silica gel) using EtOAc-PE (3:7) as an eluent, affording the dihydropyridone 9 as a colorless liquid (7.6 g, 70% yield).