References and Notes
<A NAME="RG23908ST-1A">1a</A>
Aniszewski T.
Alkaloids - Secrets
of Life
Elsevier;
Amsterdam:
2007.
<A NAME="RG23908ST-1B">1b</A>
Shulgin AT.
Perry WE.
The Simple Plant Isoquinolines
Transform
Press;
London:
2003.
<A NAME="RG23908ST-1C">1c</A>
Lundström J.
In The Alkaloids
Vol.
21:
Brossi A.
Academic
Press;
New York:
1983.
p.255-327
<A NAME="RG23908ST-1D">1d</A>
The
Alkaloids
Vol. 7:
Manske RHF.
Academic Press;
New
York:
1960.
<A NAME="RG23908ST-1E">1e</A>
The
Alkaloids
Vol. 4:
Manske RHF.
Holmes HL.
Academic
Press;
New York:
1954.
For recent reviews, see:
<A NAME="RG23908ST-2A">2a</A>
Bentley KW.
Nat. Prod. Rep.
2006,
20:
444
<A NAME="RG23908ST-2B">2b</A>
Bentley KW.
Nat. Prod. Rep.
2005,
22:
249
<A NAME="RG23908ST-2C">2c</A>
Bentley KW.
Nat. Prod. Rep.
2004,
21:
395
<A NAME="RG23908ST-2D">2d</A>
Bentley KW.
Nat. Prod. Rep.
2003,
20:
342
<A NAME="RG23908ST-3">3</A>
Bischler A.
Napieralski B.
Ber. Dtsch. Chem. Ges.
1893,
26:
1903
For reviews, see:
<A NAME="RG23908ST-4A">4a</A>
Whaley WM.
Govindachari TR.
Org.
React.
1951,
6:
74
<A NAME="RG23908ST-4B">4b</A>
Kametani T.
Fukumoto K. In The
Chemistry of Heterocyclic Compounds
Part 1, Vol.
38:
Grethe G.
Weissberger A.
Taylor EC.
Wiley;
New
York:
1981.
p.139-274
<A NAME="RG23908ST-4C">4c</A>
Fowler FW. In Comprehensive Heterocyclic
Chemistry
Vol. 2:
Katritzky AR.
Rees CW.
Pergamon;
Oxford:
1984.
p.410-416
<A NAME="RG23908ST-4D">4d</A>
Jones G. In Comprehensive Heterocyclic Chemistry II
Vol.
5:
Katritzky AR.
Rees CW.
Scriven DFV.
Elsevier;
Oxford:
1996.
p.179-181
For reviews, see:
<A NAME="RG23908ST-5A">5a</A>
Larghi EL.
Amongero M.
Bracca ABJ.
Kaufman TS.
Arkivoc
2005,
(xii):
98
<A NAME="RG23908ST-5B">5b</A>
Chrzanowska M.
Rozwadowska MD.
Chem. Rev.
2004,
104:
3341
<A NAME="RG23908ST-5C">5c</A>
Cox ED.
Cook JM.
Chem. Rev.
1995,
95:
1797
<A NAME="RG23908ST-6A">6a</A>
Nagubandi S.
Fodor G.
J.
Heterocycl. Chem.
1980,
17:
1457
<A NAME="RG23908ST-6B">6b</A>
Nagubandi S.
Fodor G.
Tetrahedron
1980,
36:
1279
<A NAME="RG23908ST-6C">6c</A>
Gal J.
Wienkam RJ.
Castagnoli N.
J. Org. Chem.
1974,
39:
418
<A NAME="RG23908ST-6D">6d</A>
Fodor G.
Gal J.
Phillips BA.
Angew.
Chem., Int. Ed. Engl.
1972,
11:
919
For selected examples, see:
<A NAME="RG23908ST-7A">7a</A>
Martin SF.
Garrison PJ.
J.
Org. Chem.
1982,
47:
1513
<A NAME="RG23908ST-7B">7b</A>
Bosch J.
Domingo A.
Linares A.
J.
Org. Chem.
1983,
48:
1075
<A NAME="RG23908ST-7C">7c</A>
Sotomayor N.
Domínguez E.
Lete E.
J.
Org. Chem.
1996,
61:
4062
<A NAME="RG23908ST-7D">7d</A>
Ishikawa T.
Shimooka K.
Narioka T.
Noguchi S.
Saito T.
Ishikawa A.
Yamazaki E.
Harayama T.
Seki H.
Yamaguchi K.
J. Org. Chem.
2000,
65:
9143
<A NAME="RG23908ST-7E">7e</A>
Capilla AS.
Romero M.
Pujol MD.
Caignard
DH.
Renard P.
Tetrahedron
2001,
57:
8297
<A NAME="RG23908ST-7F">7f</A>
Batra S.
Sabnis YA.
Rosenthal PJ.
Avery MA.
Bioorg.
Med. Chem.
2003,
11:
2293
For selected examples, see:
<A NAME="RG23908ST-8A">8a</A>
Doi S.
Shirai N.
Sato Y.
J.
Chem. Soc., Perkin Trans. 1
1997,
2217
<A NAME="RG23908ST-8B">8b</A>
Wang X.-J.
Tan J.
Grozinger K.
Tetrahedron
Lett.
1998,
39:
6609
<A NAME="RG23908ST-8C">8c</A>
Sánchez-Sancho F.
Mann E.
Herradón B.
Synlett
2000,
509
<A NAME="RG23908ST-8D">8d</A>
Nicoletti M.
O’Hagan D.
Slawin AMZ.
J. Chem. Soc., Perkin Trans. 1
2002,
116
<A NAME="RG23908ST-8E">8e</A>
Chern M.-S.
Li W.-R.
Tetrahedron Lett.
2004,
45:
8323
<A NAME="RG23908ST-9">9</A>
Snyder HR.
Werber FX.
J. Am. Chem. Soc.
1950,
72:
2962
<A NAME="RG23908ST-10A">10a</A>
Itoh N.
Sugasawa S.
Tetrahedron
1957,
1:
45
<A NAME="RG23908ST-10B">10b</A>
Itoh N.
Sugasawa S.
Tetrahedron
1959,
6:
16
<A NAME="RG23908ST-11">11</A>
Kanaoka Y.
Sato E.
Yonemitsu O.
Ban Y.
Tetrahedron Lett.
1964,
5:
2419
<A NAME="RG23908ST-12">12</A>
Ramesh D.
Srinivasan M.
Synth. Commun.
1986,
16:
1523
<A NAME="RG23908ST-13">13</A>
Judeh ZMA.
Ching CB.
Bu J.
McCluskey A.
Tetrahedron
Lett.
2002,
43:
5089
<A NAME="RG23908ST-14">14</A>
Hegedüs A.
Hell Z.
Potor A.
Catal.
Commun.
2006,
7:
1022
<A NAME="RG23908ST-15">15</A>
Saito T.
Yoshida M.
Ishikawa T.
Heterocycles
2001,
54:
437
<A NAME="RG23908ST-16">16</A>
Larsen RD.
Reamer RA.
Corley EG.
Davis P.
Grabowski EJJ.
Reider PJ.
Shinkai I.
J. Org. Chem.
1991,
56:
6034
<A NAME="RG23908ST-17">17</A>
Bhattacharijya A.
Chattopadhyay P.
Bhaumik M.
Pakrashi SC.
J. Chem. Res., Synop.
1989,
228
<A NAME="RG23908ST-18A">18a</A>
Banwell MG.
Bissett BD.
Busato S.
Cowden CJ.
Hockless DCR.
Holman JW.
Read RW.
Wu AW.
J. Chem. Soc., Chem. Commun.
1995,
2551
<A NAME="RG23908ST-18B">18b</A>
Wang
Y.-C.
Georghiou PE.
Synthesis
2002,
2187
<A NAME="RG23908ST-19">19</A>
Boruah M.
Konwar D.
J. Org. Chem.
2002,
67:
7138
<A NAME="RG23908ST-20">20</A>
Spaggiari A.
Blaszczak LC.
Prati F.
Org.
Lett.
2004,
6:
3885
<A NAME="RG23908ST-21">21</A>
Spaggiari A.
Davoli P.
Blaszczak LC.
Prati F.
Synlett
2005,
661
<A NAME="RG23908ST-22A">22a</A>
Vaccari D.
Davoli P.
Bucciarelli M.
Spaggiari A.
Prati F.
Lett. Org. Chem.
2007,
4:
319
<A NAME="RG23908ST-22B">22b</A>
Vaccari D.
Davoli P.
Spaggiari A.
Prati F.
Synlett
2008,
1317
<A NAME="RG23908ST-23A">23a</A>
Acetamides 1a-e,h were prepared by treatment of the parent β-phenylethylamine
with Ac2O, whereas for amides 1f,g the appropriate acyl chloride was employed
instead. Except for 1a and 1b,
which were obtained from commercially available β-phenyl-
and 4-methoxy-β-phenylethylamine, respectively, in all
other cases the starting β-phenylethylamine was synthesized
by condensation of the corresponding aromatic aldehyde with nitromethane
in the presence of AcOH and NH4OAc, and subsequent reduction
of the resulting nitrostyrene with LAH in THF.7f,²³b In
particular, 3-methoxybenzaldehyde, piperonal, veratryl aldehyde,
and 3,4,5-trimethoxybenz-aldehyde were used for 1c,d,e-g,h, respectively.
In the latter case, the original procedure for the synthesis of
mescaline was used.²³c All synthesized β-phenylethylamines
were used without any further purification.
<A NAME="RG23908ST-23B">23b</A>
Sawant D.
Kumar R.
Maulik PR.
Kundu B.
Org. Lett.
2006,
8:
1525
<A NAME="RG23908ST-23C">23c</A>
Späth E.
Monatsh. Chem.
1919,
40:
129
<A NAME="RG23908ST-24">24</A>
Synthesis of 6,7-Dimethoxy-1-phenyl-3,4-dihydro-isoquinoline
(2f)
Triphenyl phosphite (0.89 mL, 3.41 mmol) was
dissolved in anhyd CH2Cl2 (20 mL) and cooled
to -60 ˚C. Bromine (0.18 mL, 3.41 mmol)
and anhyd Et3N (0.51 mL, 3.69 mmol) were introduced sequentially
under argon flow. N-[2-(3,4-dimeth-oxyphenyl)ethyl]benzamide
(1f, 819 mg, 2.84 mmol) was then added
in one portion to the bright yellow solution maintained at the same
temperature under vigorous stirring. The resulting mixture was gradually
warmed to r.t. over a
2 h period, and left to stir overnight.
Subsequently, the dark reaction mixture was extracted with 3 M HCl
(3 × 15 mL), the combined aqueous layers
were basified with 10% aq NaOH until pH = 11
and extracted with CH2Cl2 (3 × 15
mL). The pooled organic phases were dried over MgSO4,
filtered, and evaporated under reduced pressure to afford the desired 3,4-dihydroisoquinoline
2f as a brownish liquid (692 mg, 92% yield). ¹H
NMR (200 MHz, CDCl3): δ = 2.68
(2 H, t,
J = 7.4 Hz,
CH
2CH2N), 3.67
(3 H, s, OMe), 3.77 (2 H, q, J = 7.4
Hz, CH2CH
2N), 3.86
(3 H, m, OMe), 6.75 (2 H, s, arom.), 7.36-7.59 (5 H, m,
Ph). ¹³C NMR (50 MHz, CDCl3): δ = 26.0,
47.6, 56.0, 56.1, 110.4, 111.7, 120.0, 121.5, 128.1, 128.7, 129.2,
129.8, 132.5, 139.1, 147.5. MS: m/z = 235 [M+],
220, 204, 190, 177, 162,159, 146, 133, 110, 103, 91, 77, 65. Anal.
Calcd for C12H13ClN2: C, 76.38;
H, 6.41; N, 5.24. Found: C, 76.59; H, 6.65; N, 5.08.
<A NAME="RG23908ST-25A">25a</A>
Fugmann B.
Steffan B.
Steglich W.
Tetrahedron Lett.
1984,
25:
3575
<A NAME="RG23908ST-25B">25b</A>
Hilger CS.
Fugmann B.
Steglich W.
Tetrahedron Lett.
1985,
26:
5975
<A NAME="RG23908ST-26">26</A>
Antkowiak R.
Antkowiak WZ.
In The
Alkaloids
Vol. 40:
Brossi A.
Academic
Press;
San Diego:
1991.
p.190-340
<A NAME="RG23908ST-27">27</A>
Spaggiari A.
Vaccari D.
Davoli P.
Torre G.
Prati F.
J.
Org. Chem.
2007,
72:
2216
<A NAME="RG23908ST-28">28</A>
Okuda K.
Kotake Y.
Ohta S.
Bioorg.
Med. Chem. Lett.
2003,
13:
2853
<A NAME="RG23908ST-29">29</A>
Liu D.
Venhuis BJ.
Wikström HV.
Dijkstra D.
Tetrahedron
2007,
63:
7264
<A NAME="RG23908ST-30">30</A>
Moore MB.
Wright HB.
Vernsten M.
Freifelder M.
Richards RK.
J.
Am. Chem. Soc.
1954,
76:
3656
<A NAME="RG23908ST-31A">31a</A>
Bills JL.
Noller CR.
J. Am. Chem. Soc.
1948,
70:
957
<A NAME="RG23908ST-31B">31b</A>
Späth E.
Polgar N.
Monatsh.
Chem.
1929,
51:
190
<A NAME="RG23908ST-32A">32a</A>
Brossi A.
Dolan LA.
Teitel S.
Org. Synth.
1977,
56:
3
<A NAME="RG23908ST-32B">32b</A>
Venkov AP.
Ivanov II.
Tetrahedron
1996,
52:
12299
<A NAME="RG23908ST-33A">33a</A>
Cortés EC.
Romero EC.
Ramírez FG.
J.
Heterocycl. Chem.
1994,
31:
1425
<A NAME="RG23908ST-33B">33b</A>
Minor DL.
Wyrick SD.
Charifson PS.
Watts VJ.
Nichols DE.
Mailman RB.
J. Med. Chem.
1994,
37:
4317
<A NAME="RG23908ST-34A">34a</A>
Kuo C.-Y.
Wu M.-J.
J.
Chin. Chem. Soc. (Taipei)
2005,
52:
965
<A NAME="RG23908ST-34B">34b</A>
von Nussbaum F.
Miller B.
Wild S.
Hilger CS.
Schumann S.
Zorbas H.
Beck W.
Steglich W.
J. Med. Chem.
1999,
42:
3478
<A NAME="RG23908ST-35A">35a</A>
Späth E.
Monatsh. Chem.
1921,
42:
97
<A NAME="RG23908ST-35B">35b</A>
Leete E.
J.
Am. Chem. Soc.
1966,
88:
4219