RSS-Feed abonnieren
DOI: 10.1055/s-0028-1087367
Highly Enantioselective Aziridination of N-Protected Imines: Comparison of the Phosphazene EtP2 and Sodium Hydride as Bases
Publikationsverlauf
Publikationsdatum:
26. November 2008 (online)

Abstract
Asymmetric synthesis of 2,3-disubstituted N-Boc, N-SES, and N-Ts aziridines starting from N-protected imines, using sulfonium salt derived from Eliel’s oxathiane, is reported. Sodium hydride was successfully used as a substitute for the phosphazene base EtP2 without any loss of yield, enantioselectivity, or diastereoselectivity.
Key words
asymmetric synthesis - aziridines - enantioselectivity - imine - ylide
- For reviews on asymmetric aziridinations and ring transformations, see:
- 1a
Tanner T. Angew. Chem., Int. Ed. Engl. 1994, 33: 599Reference Ris Wihthout Link - 1b
McCoull W.Davis FA. Synthesis 2000, 1347Reference Ris Wihthout Link - 1c
Zwanenburg B.Holte PT. Top. Curr. Chem. 2001, 216: 93Reference Ris Wihthout Link - 1d
Sweeney JB. Chem. Soc. Rev. 2002, 31: 247Reference Ris Wihthout Link - 1e
Müller P.Fruit C. Chem. Rev. 2003, 103: 2905Reference Ris Wihthout Link - 1f
Aziridines
and Epoxides in Organic Synthesis
Yudin AK. Wiley-VCH; Weinheim: 2006.Reference Ris Wihthout Link - 1g
McGarrigle EM.Myers EL.Illa O.Shaw MA.Riches SL.Aggarwal VK. Chem. Rev. 2007, 107: 5841Reference Ris Wihthout Link - 1h
McGarrigle EM.Aggarwal VK. Enantioselective Organocatalysis: Reactions and Experimental ProceduresDalko PI. Wiley-VCH; Weinheim: 2007. Chap. 10.Reference Ris Wihthout Link - 1i
Friestad GK.Mathies AK. Tetrahedron 2007, 63: 2514Reference Ris Wihthout Link - 1j
Padwa A. In Comprehensive Heterocyclic Chemistry III Vol. 1:Katrizky KA.Ramsden CA.Scriven EFV.Taylor RJK. Elsevier; Oxford: 2008. Chap.1. p.1Reference Ris Wihthout Link - 2a
Davis FA.Liu H.Zhou P.Fang R.Reddy V.Zhang Y. J. Org. Chem. 1999, 64: 7559Reference Ris Wihthout Link - 2b
Davis FA.Ramachandar T.Wu Y. J. Org. Chem. 2003, 68: 6894Reference Ris Wihthout Link - 2c
Davis FA.Wu Y.McCoull W.Prasad K. J. Org. Chem. 2003, 68: 2410Reference Ris Wihthout Link - 2d
Sweeney JB.McLaren AB. Org. Lett. 1999, 1: 1339Reference Ris Wihthout Link - 3a
Hansen KB.Finney NS.Jacobsen EN. Angew. Chem., Int. Ed. Engl. 1995, 34: 676Reference Ris Wihthout Link - 3b
Juhl K.Hazell RG.Jorgensen KA. J. Chem. Soc., Perkin Trans. 1 1999, 2293Reference Ris Wihthout Link - 3c
Rasmussen KG.Jorgensen KA. J. Chem. Soc., Perkin Trans. 1 1997, 1287Reference Ris Wihthout Link - 3d
Antilla JC.Wulff WD. J. Am. Chem. Soc. 1999, 121: 5099Reference Ris Wihthout Link - 3e
Antilla JC.Wulff WD. Angew. Chem. Int. Ed. 2000, 39: 4518Reference Ris Wihthout Link - 4a
Aggarwal VK.Thompson A.Jones RVH.Standen MCH. J. Org. Chem. 1996, 61: 8368Reference Ris Wihthout Link - 4b
Aggarwal VK.Alonso E.Fang G.Ferrara M.Hynd G.Porcelloni M. Angew. Chem. Int. Ed. 2001, 40: 1433Reference Ris Wihthout Link - 4c
Aggarwal VK.Ferrara M.O’Brien CJ.Thompson A.Jones RVH.Fieldhouse R. J. Chem. Soc., Perkin Trans. 1 2001, 1635Reference Ris Wihthout Link - 4d
Li AH.Zhou YG.Dai LX.Hou XL.Xia LJ.Lin J. J. Org. Chem. 1998, 63: 4338Reference Ris Wihthout Link - 4e
Hou XL.Wu J.Fan RH.Ding CH.Luo ZB.Dai LX. Synlett 2006, 181Reference Ris Wihthout Link - 4f
Saito T.Sakairi M.Akiba D. Tetrahedron Lett. 2001, 42: 5451Reference Ris Wihthout Link - 4g
Morton D.Pearson D.Field RA.Stockman RA. Org. Lett. 2004, 6: 2377Reference Ris Wihthout Link - 4h
Robiette R. J. Org. Chem. 2006, 71: 2726Reference Ris Wihthout Link - 4i
Janardanan D.Sunoj RB. Chem. Eur. J. 2007, 13: 4805Reference Ris Wihthout Link - 5
Solladié-Cavallo A.Roje M.Welter R.Šunjić V. J. Org. Chem. 2004, 69: 1409 - For applications of the sulfonium salt 1 in asymmetric epoxidations, see:
- 6a
Solladié-Cavallo A.Adib A. Tetrahedron 1992, 48: 2453Reference Ris Wihthout Link - 6b
Solladié-Cavallo A.Diep-Vohuule A. J. Org. Chem. 1995, 60: 3494Reference Ris Wihthout Link - 6c
Solladié-Cavallo A.Diep-Vohuule A.Šunjić V.Vinković V. Tetrahedron: Asymmetry 1996, 7: 1783Reference Ris Wihthout Link - 6d
Solladié-Cavallo A.Diep-Vohuule A.Isarno T. Angew. Chem. Int. Ed. 1998, 37: 1689Reference Ris Wihthout Link - 7a
Solladié-Cavallo A.Roje M.Isarno T.Šunjić V.Vinković V. Eur. J. Org. Chem. 2000, 1077Reference Ris Wihthout Link - 7b
Solladié-Cavallo A.Roje M.Giraud-Roux M.Chen Y.Berova N.Šunjić V. Chirality 2004, 16: 196Reference Ris Wihthout Link - 8
Eliel EL.Lynch JE.Kume F.Frye SV. Org. Synth., Coll. 8 1993, 302 - 9
Vedejs E.Engler DA.Mullins MJ. J. Org. Chem. 1977, 42: 3109. Trifluoromethanesulfonic anhydride (2 equiv) was added to a solution of pyridine (2 equiv) in dry CH2Cl2 under argon, cooled to -20 ˚C. After 15 min, benzyl alcohol was added (1 equiv), and after 1 h oxathiane 2 (1 equiv). Stirring was continued at -10 ˚C for 4 h. Water was added, and the mixture extracted with CH2Cl2 (5×). The combined organic extracts were dried over Na2SO4, filtered, and concentrated under vacuum. Pure salt 2 was obtained after washing the crude product with dry Et2O (3×); yield: 68%. - 10
Solladié-Cavallo A.Adib A.Schmitt M.Fischer J.DeCian A. Tetrahedron: Asymmetry 1992, 3: 1597 - 11 The N-Ts
imines were prepared according to:
Jennings WB.Lovely CJ. Tetrahedron 1991, 47: 5561 - 12
Protecting
Groups
Kocieński PJ. Thieme; Stuttgart: 1994. p.185Reference Ris Wihthout Link - The N-SES imines were prepared according to:
- 13a
McKay WR.Proctor GR. J. Chem. Soc., Perkin. Trans. 1 1981, 2435Reference Ris Wihthout Link - The N-Boc imines were prepared according to:
- 13b
Kazanawa AM.Denis JN.Greene AE. J. Org. Chem. 1994, 59: 1238Reference Ris Wihthout Link - 13c
Trost BM.Jaratjaroonphong J.Reutrakul V. J. Am. Chem. Soc. 2006, 128: 2778Reference Ris Wihthout Link
References and Notes
N
-(1-Naphthylidene)-2-trimethylsilylethanesulfon-amide
(15)
A mixture of 1-naphthaldehyde (300 mg, 0.26 mL,
1.91 mmol, 1 equiv), 2-(trimethylsilyl)ethanesulfonamide (415 mg,
2.29 mmol, 1.2 equiv), and anhyd Et3N (1.26 mL, 9.1 mmol,
4 equiv) in anhyd CH2Cl2 (15 mL), under argon,
was cooled to 0 ˚C. A TiCl4 solution
in CH2Cl2 (1.9 mL of 1 M solution, 1 equiv)
was carefully added, and reaction mixture was stirred at 0 ˚C
for 1 h, and then at r.t. for 20 h. The reaction mixture was filtered
trough Celite, concentrated, and toluene (20 mL) was added to the
solid residue. After 10 min of stirring, the mixture was filtered,
and the filtrate concentrated under vacuum. The NMR analysis of
the crude product 15 showed that it containes
4% of the starting amide and 96% of the imine.
The product was found to decompose on silica gel and was used in
the next step without further purification (570 mg, w = 98%,
yield 89%). ¹H NMR (300 MHz, CDCl3): δ = 0.07
(s, 9 H), 1.09-1.15 (m, 2 H), 3.19-3.25 (m, 2
H), 7.59-7.65 (m, 2 H), 7.71 (td, 1 H, J
1 = 7.7
Hz, J
2 = 1.4
Hz), 7.96 (d, 1 H, J = 8.0
Hz), 8.15 (d, 1 H, J = 8.0 Hz),
8.19 (d, 1 H, J = 7.2
Hz), 9.04 (d, 1 H, J = 8.0
Hz), 9.59 (s, 1 H). ¹³C NMR (75 MHz,
CDCl3): δ = -2.09, 9.50, 49.01, 124.22,
125.08, 126.95, 127.48, 128.91, 129.03, 131.73, 133.76, 135.22,
136.14, 170.91.
2-Phenyl-3-(1-naphthyl)-1-(2-trimethylsilylethane-sulfonyl)-aziridine
(21)
To a stirred solution of benzyl sulfonium salt 1 (352 mg, 0.80 mmol, 1 equiv) under argon
in anhyd THF (10 mL), cooled to -40 ˚C,
NaH dispersion in paraffin (64 mg, w = 60%,
1.6 mmol, 2 equiv) was added. After 1 h, a THF solution (2 mL) of N-(1-naphthylidene)-2-trimethylsilylethanesulfonamide (15, 270 mg, w = 98%,
0.80 mmol, 1 equiv) was dropwise added. The reaction mixture was
stirred for 20 h at -40 ˚C. Cold H2O
(15 mL) was carefully added, and the mixture was extracted with
CH2Cl2 (3 × 10
mL). The combined organic extracts were dried over Na2SO4,
filtered, and concentrated under vacuum. The crude product was analyzed
by ¹H NMR to determine the diastereomeric ratio
and then was purified by column chromatography on silica gel. First
fraction contained recovered (R,R,R)-oxathiane 2 (145 mg, 90%);
R
f
= 0.8
(PE-EtOAc, 8:2).The title compound 21 was isolated
as colorless oil (201 mg, 63%); R
f
= 0.47 (PE-EtOAc,
8:2). Isomers of 21 were separated by chiral
HPLC; trans: ee >99% [Chiralcel
OD, hexane-EtOAc (90:10), 254 nm, 1 mL/min, t
R(minor) = 11.5
min, t
R(major) = 14.4
min]; [α]D
²5 +75
(c 1; CH2Cl2). ¹H
NMR (300 MHz, CDCl3): δ = -0.05
(s, 9 H), 1.05-1.09 (m, 2 H), 2.94-3.06 (m, 2
H), 4.32 (d, 1 H, J = 4.5
Hz), 4.80 (d, 1 H, J = 4.5
Hz), 7.40-7.56 (m, 5 H), 7.60 (td, 1 H, J
1 = 7.7
Hz, J
2 = 1.1
Hz), 7.64 (d, 2 H, J = 8.1
Hz), 7.68 (d, 1 H, J = 7.1
Hz), 7.88 (d, 1 H, J = 8.1 Hz),
7.91 (d, 1 H, J = 8.1
Hz), 8.25 (d, 1 H, J = 8.1
Hz). ¹³C NMR (75 MHz, CDCl3): δ = -2.16,
9.63, 48.58, 49.49, 50.97, 123.55, 125.19, 125.22, 126.15, 126.70,
128.32, 128.72, 128.81, 128.93, 129.37, 129.60, 132.47, 133.28, 133.55.
IR (KBr): 3057, 2950, 1325, 1250, 1145, 932, 843, 796 cm-¹.
Anal. Calcd for C23H27NO2SSi (409.62):
C, 67.44; H, 6.64; N, 3.42. Found: C, 67.36; H, 7.06; N, 3.50. Cis: ee >99% [Chiralcel
OD, hexane-EtOH (90:10), 254 nm, 1 mL/min, t
R(minor) = 5.7
min, t
R(major) = 8.0
min], [α]D
²5 +197 (c 0.35, CH2Cl2). ¹H
NMR (300 MHz, CDCl3): δ = 0.01 (s, 9
H), 1.23-1.29 (m, 2 H), 3.25-3.31 (m, 2 H), 4.39
(d, 1 H, J = 7.2
Hz), 4.67 (d, 1 H, J = 7.2
Hz), 7.01-7.03 (m, 3 H), 7.12-7.17 (m, 2 H), 7.32-7.53
(m, 3 H), 7.58 (d, 1 H, J = 7.1 Hz),
7.70 (d, 1 H, J = 8.1
Hz), 7.77 (d, 1 H, J = 8.1
Hz), 8.04 (d, 1 H, J = 8.1
Hz). ¹³C NMR (75 MHz, CDCl3): δ = -2.11, 9.86,
46.02, 47.27, 49.17, 122.84, 124.84, 125.80, 125.98, 126.31, 127.27,
127.71, 127.78, 127.79, 128.36, 128.50, 131.26, 131.97, 133.08.
IR (KBr): 3059, 2950, 1328, 1250, 1145, 911, 841, 804 cm-¹
2-Phenyl-3-(4-methoxyphenyl)-1-(
tert
-butoxycarbonyl)-aziridine
(23)
Compound 23 was prepared
as above starting from N-(tert-butoxycarbonyl)-4-methoxybenzaldimine
(17, 100 mg, 0.42 mmol, 1 equiv), and was
isolated as colorless oil after workup and chromatography on neutral
alumina, activity I (42 mg, 31%); R
f
= 0.55 (hexane-EtOAc,
9:1). Product 23 is a cis/trans mixture (9:91), and the assignments
are of the major trans-isomer. Trans: ee = 96% [Chiralpak
AD, hexane-2-PrOH (92:8), 229 nm, 1 mL/min, t
R(major) = 25.7 min, t
R(minor) = 28.8
min]. ¹H NMR (300 MHz, CDCl3):
δ = 1.20
(s, 9 H), 3.71 (d, 1 H, J = 3.3
Hz), 3.76 (d, 1 H, J = 3.3
Hz), 3.81 (s, 3 H), 6.89 (d, 2 H, J = 9.1
Hz), 7.27 (d, 2 H, J = 9.1
Hz), 7.32-7.35 (m, 5 H). ¹³C
NMR (75 MHz, CDCl3): δ = 27.67, 47.09,
47.73, 55.35, 81.34, 113.91, 126.93, 127.40, 127.98, 128.33, 128.47,
135.87, 159.54, 160.56. IR (KBr): 2926, 1752, 1720, 1608, 1519,
1255, 990, 831 cm-¹.
2-Phenyl-3-(1-naphthyl)-1-(
tert
-butoxycarbonyl)-aziridine
(24)
Compound 24 was prepared
as above starting from N-(tert-butoxycarbonyl)-1-naphthaldimine
(18, 100 mg, 0.39 mmol, 1 equiv), and was
isolated as viscous colorless oil after workup (101 mg, 75%); R
f
= 0.22
(hexane-EtOAc, 8:2). Even though the crude mixture contained
mixture of trans/cis isomers
(98:2), after chromatography, only trans-isomer was
isolated. Trans: ee = 96% (Chiralcel
OJ, hexane-EtOH (95:5), 254 nm, 1 mL/min, t
R(minor) = 9.9
min, t
R(major) = 12.5
min]. [α]D
²5 +89
(c 2.1, CH2Cl2). ¹H
NMR (300 MHz, CDCl3): δ = 1.02 (s,
9 H), 3.85 (d, 1 H, J = 3.5 Hz),
4.47 (d, 1 H, J = 3.5
Hz), 7.37-7.54 (m, 8 H), 7.61 (d,
1 H, J = 6.8 Hz),
7.83 (d, 1 H, J = 8.5
Hz), 7.87-7.89 (m, 1 H), 8.22-8.25 (m,
1 H). ¹³C NMR (75 MHz, CDCl3): δ = 27.42,
44.66, 47.18, 81.32, 123.95, 124.18, 125.39, 125.63, 125.97, 126.42,
127.51, 128.33, 128.53, 128.65, 132.01, 132.55, 133.42, 135.04,
160.11. IR (KBr): 3052, 2976, 2926, 1711, 1295, 1148, 779 cm-¹.
Anal. Calcd for C23H23NO2 (345.43):
C, 79.97; H, 6.71; N, 4.05. Found: C, 79.90; H, 6.50; N, 3.89.