Subscribe to RSS
DOI: 10.1055/s-0028-1087556
Greener and Expeditious Synthesis of 1,4-Disubstituted 1,2,3-Triazoles from Terminal Acetylenes and in situ Generated α-Azido Ketones
Publication History
Publication Date:
06 February 2009 (online)

Abstract
A convenient and mild protocol for the one-pot regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles in aqueous PEG 400 has been reported. The methodology involves the one-pot reaction of α-bromo ketones, sodium azide, and terminal acetylenes catalyzed by Cu(I) in aqueous PEG 400 at room temperature. Prominent features of our approach are mild reaction conditions, use of readily available α-bromo compounds, aqueous PEG 400 as a benign reaction medium, avoiding the isolation of labile α-azido ketones, simple workup, and good yields.
Key words
1,2,3-triazoles - α-bromo ketones - click chemistry - α-azido ketones
- 1a
Kolb HC.Sharpless KB. Drug Discovery Today 2003, 8: 1128Reference Ris Wihthout Link - 1b
Kolb HC.Finn MG.Sharpless KB. Angew. Chem. Int. Ed. 2001, 40: 2004Reference Ris Wihthout Link - 1c
Gil MV.Arevalo MJ.Lopez O. Synthesis 2007, 1589Reference Ris Wihthout Link - 1d
Moses JE.Moorhouse AD. Chem. Soc. Rev. 2007, 36: 1249Reference Ris Wihthout Link - 1e
Bock VD.Hiemstra H.Maarseveen JHV. Eur. J. Org. Chem. 2006, 51Reference Ris Wihthout Link - 1f
Genin MJ.Allwine DA.Anderson DJ.Barbachyn MR.Emmert DE.Garmon SA.Graber DR.Grega KC.Hester JB.Hutchinson DK.Morris J.Reischer RJ.Ford CW.Zurenco GE.Hamel JC.Schaadt RD.Stapert D.Yagi BH. J. Med. Chem. 2000, 43: 953Reference Ris Wihthout Link - 1g
Pagliai F.Pirali T.Grosso ED.Brisco RD.Tron GC.Sorba G.Genazzani AA. J. Med. Chem. 2006, 49: 467Reference Ris Wihthout Link - 1h
Brik A.Muldoon J.Lin YC.Elder JH.Goodsell DS.Olson AJ.Fokin VV.Sharpless KB.Wong CH. ChemBioChem 2003, 4: 1246Reference Ris Wihthout Link - 1i
Brockunier LL.Parmee ER.Ok HO.Candelore MR.Cascieri MA.Colwell LF.Deng L.Feeney WP.Forrest MJ.Hom GJ.MacIntyre DE.Tota L.Wyvratt MJ.Fischer MH.Weber AE. Bioorg. Med. Chem. Lett. 2000, 10: 2111Reference Ris Wihthout Link - 1j
Velazquez S.Alvarez R.Perez C.Gago F.De Clercq E.Balzarini J.Camarasa MJ. Antiviral Chem. Chemother. 1998, 9: 481.Reference Ris Wihthout Link - 2a
Fan WQ.Katritzky AR. In Comprehensive Heterocyclic Chemistry II Vol. 4:Katritzky AR.Rees CW.Scriven CWV. Oxford; Elsevier: 1996. p. 1-126Reference Ris Wihthout Link - 2b
Thibault RJ.Takizawa K.Lowenheilm P.Helms B.Mynar JL.Frechet JMJ.Hawker CJ.
J. Am. Chem. Soc. 2006, 128: 12084Reference Ris Wihthout Link - 2c
Abu-Orabi ST.Alfah MA.Jibril I.Marii FM.Ali AAS. J. Heterocycl. Chem. 1989, 26: 1461Reference Ris Wihthout Link - 2d
Scriven EFV.Turnbull K. Chem. Rev. 1988, 88: 297Reference Ris Wihthout Link - 2e
Maksikova AV.Serebryakova ES.Tikhonova LG.Vereshagin LI. Chem. Heterocycl. Compd. 1980, 1284Reference Ris Wihthout Link - 2f
Kacprzak K. Synlett 2005, 943Reference Ris Wihthout Link - 2g
Lubineau A.Auge J.Queneau Y. Synthesis 1994, 741Reference Ris Wihthout Link - 2h
Li CJ.Chan TH. Organic Reactions in Aqueous Media New York; Wiley: 1997.Reference Ris Wihthout Link - 2i
Lindstrom UM. Chem. Rev. 2002, 102: 2751Reference Ris Wihthout Link - 3a
Horne WS.Yadav MK.Stout CD.Ghadiri MR. J. Am. Chem. Soc. 2004, 126: 15366Reference Ris Wihthout Link - 3b
Dalvie DK.Kalgutkar AS.Khojasteh-Bakht SC.Obach RS.O’Donnell JP. Chem. Res. Toxicol. 2002, 15: 269Reference Ris Wihthout Link - 3c
Speers AE.Cravatt BF. Chem. Biol. 2004, 11: 535Reference Ris Wihthout Link - 3d
Lee LV.Mitchell ML.Huang S.-J.Fokin VV.Sharpless KB.Wong C.-H. J. Am. Chem. Soc. 2003, 125: 9588Reference Ris Wihthout Link - 4a
Polshettiwar V.Varma RS. Chem. Soc. Rev. 2008, 1546Reference Ris Wihthout Link - 4b
Polshettiwar V.Varma RS. Acc. Chem. Res. 2008, 41: 629Reference Ris Wihthout Link - 4c
Adams DJ.Dyson PJ.Tavener SJ. Chemistry in Alternative Reaction Media Wiley; Chichester: 2004.Reference Ris Wihthout Link - 4d
Matlack AS. Introduction to Green Chemistry Marcel Dekker Inc.; New York: 2001.Reference Ris Wihthout Link - 5
Anastas PT.Warner JC. Green Chemistry: Theory and Practice Oxford University Press; Oxford: 1998.Reference Ris Wihthout Link - 6
Zhu J.Bienayme H. Multicomponent Reactions 1st ed.: Wiley-VCH; Weinheim: 2005.Reference Ris Wihthout Link - 7a
Huisgen R. In 1,3-Dipolar Cycloaddition ChemistryPadwa A. Wiley; New York: 1984. p.1-176Reference Ris Wihthout Link - 7b
Padwa A. In Comprehensive Organic Synthesis Vol. 4:Trost BM. Pergamon; Oxford: 1991. p.1069-1109Reference Ris Wihthout Link - 7c
Smith CD.Baxendale IR.Lanners S.Hayward JJ.Smith SC.Ley SV. Org. Biomol. Chem. 2007, 5: 1559Reference Ris Wihthout Link - 8
Tanemura K.Suzuki T.Nishida Y.Satsumabayashi K.Horaguchi T. Chem. Commun. 2004, 470 - 9a
Marsh FD. J. Org. Chem. 1972, 37: 2966Reference Ris Wihthout Link - 9b
Priebe H.Braathen GO.Klaeboe P.Neelsen C.Priebe H. Acta Chem. Scand. Ser. B 1984, 38: 895Reference Ris Wihthout Link - 9c
Smith PAS. Derivatives of Hydrazine and Other Hydronitrogens Having N-N Bonds Benjamin-Cummings; Reading (MA): 1983. p.263Reference Ris Wihthout Link - 11a
Chen J.Spear SK.Huddleston JG.Rogers RD. Green Chem. 2005, 7: 64Reference Ris Wihthout Link - 11b
Zaslavsky BY. Aqueous Two-Phase Partitioning: Physical Chemistry and Bioanalytical Applications Marcel Dekker; New York: 1995.Reference Ris Wihthout Link - 11c
Yalkowsky SH.Banerjee S. Aqueous Solubility: Methods of Estimation for Organic Compounds Marcel Dekker; New York: 1992.Reference Ris Wihthout Link
References and Notes
General Procedure
To
a solution of α-halo compound 1 (1.0
mmol), NaN3 (1.2 mmol), and terminal acetylene (1.0 mmol)
in aq PEG 400 (2 mL) was added sodium ascorbate (19.8 mg, 10 mol%)
and 1 M CuSO4 (50 µL, 5 mol%) solution.
The reaction mixture was allowed to stir at r.t. for 30 min. After
the reaction was complete, as indicated by TLC, the solid product
was filtered, washed, and dried to afford pure product.
Analytical Data for Selected Compounds
Compound 2a:7c IR (KBr): 1690 (CO) cm-¹. ¹H
NMR (200 MHz, CDCl3): δ = 8.04-8.00
(2 H, m), 7.95 (1 H, s), 7.89-7.84 (2 H, m), 7.73-7.65
(1 H, m), 7.59-7.31 (5 H, m), 5.91 (2 H, s). ¹³C
NMR (50 MHz, CDCl3): δ = 195.0
(CO), 152.4, 139.0, 138.2, 134.5, 133.5, 133.2, 132.7, 132.5, 130.1, 126.4,
59.9. MS (EI): m/z calcd for
C16H14N3O [M + H]+: 264.1;
found: 264.3.
Compound 2h: IR
(KBr): 1680 (CO) cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 8.53
(1 H, s), 8.11 (2 H, d, J = 8.0
Hz), 7.88 (2 H, d, J = 8.0
Hz), 7.70 (2 H, d, J = 8.0
Hz), 7.48-7.45 (2 H, m), 7.37-7.35 (1 H, m), 6.27
(2 H, s). ¹³C NMR (100 MHz, DMSO-d
6): δ = 191.4
(CO), 146.3, 139.2, 132.8, 130.7, 130.1, 129.1, 128.9, 127.9, 125.1,
123.0, 56.0. MS (EI): m/z calcd
for C16H13ClN3O [M + H]+:298.0747;
found: 297.9593.
Compound 2l: IR (KBr): 1720 (CO) cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 8.56
(1 H, s), 7.85 (2 H, d, J = 8.0 Hz),
7.47-7.44 (2 H, m), 7.35-7.32 (1 H, m), 5.76-5.71
(1
H, m), 2.75-2.67 (1 H, m), 2.45-2.32 (3 H, m),
2.11-2.09 (1 H, m), 1.96-1.92 (2 H, m), 1.76-1.68
(1 H, m). ¹³C NMR (100 MHz, DMSO-d
6): δ = 204.1
(CO), 145.9, 130.8, 128.9, 127.8, 125.0, 121.3, 66.8, 40.4, 33.4,
26.4, 23.6. MS (EI):
m/z calcd
for C14H16N3O [M + H]+:
242.1293; found: 242.0473.
Compound 2o: IR (KBr): 1685 (CO) cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 9.17
(1 H, s), 8.61 (1 H, s), 8.20 (2 H, d, J = 8.0
Hz), 8.15 (1 H, d, J = 8.0
Hz), 8.02 (1 H, d, J = 8.0 Hz),
7.90 (2 H, d, J = 8.0
Hz), 7.80-7.76 (1 H, m), 7.69-7.65 (2 H, m), 7.49-7.33
(5 H, m), 6.26 (2 H, s). ¹³C NMR (100 MHz,
DMSO-d
6): δ = 187.9
(CO), 146.3, 136.3, 135.4, 134.8, 133.9, 130.7, 130.2, 128.9, 127.9,
127.3, 126.8, 126.2, 125.2, 125.1, 123.2, 122.0, 117.5, 113.1, 56.0.
MS (EI): m/z calcd for C24H19N4O3S [M + H]+:
443.1178; found: 443.0073.
Compound 2p:
IR (KBr): 1759 (CO) cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.92-7.82
(3 H, m), 7.42-7.27 (3 H, m), 5.21 (2 H, s), 3.80 (3 H,
s). ¹³C NMR (75 MHz, CDCl3): δ = 166.8
(CO), 148.2, 130.4, 128.9, 128.3, 125.8, 121.1, 53.0, 50.8. MS (EI): m/z calcd for C11H12N3O2 [M + H]+:
218.1; found: 218.3.
Compound 2q:
IR (KBr): 1651 (CO) cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 8.03 (1 H,
s), 7.85-7.83 (2 H, m), 7.44-7.39 (2 H, m), 7.39-7.30
(1 H, m), 5.23 (2 H, s), 3.46-3.39 (4 H, m), 1.25 (3 H,
t, J = 7.15
Hz), 1.15 (3 H, t, J = 7.10 Hz). ¹³C
NMR (75 MHz, CDCl3): δ = 164.0 (CO),
148.0, 130.7, 128.8, 128.1, 125.8, 121.4, 50.9, 42.0, 41.0, 14.4, 12.8.
MS (EI): m/z calcd for C14H19N4O [M + H]+:
259.2; found: 259.3.
Compound 2r:
IR (KBr): 2286 (CN) cm-¹. ¹H
NMR (200 MHz, CDCl3): δ = 8.00 (1 H,
s), 7.86-7.81 (2 H, m), 7.51-7.38 (3 H, m), 5.40
(2 H, s). ¹³C NMR (50 MHz, CDCl3):
δ = 149.6,
129.9, 129.4, 129.3, 126.3, 120.3, 113.1, 38.0. MS (EI): m/z calcd for C10H9N4 [M + H]+:
185.1; found: 185.2.
Compound 2s:
IR (KBr): 1693 (CO) cm-¹. ¹H
NMR (300 MHz, DMSO-d
6): δ = 7.86
(2 H, d, J = 8.49
Hz), 7.68 (2 H, d, J = 8.49
Hz), 7.51 (1 H, s), 5.79 (2 H, s), 3.65-3.58 (2 H, m),
2.96-2.91 (2 H, m), 2.24-2.15 (2 H, m). ¹³C
NMR (75 MHz, CDCl3): δ = 189.7 (CO),
146.8, 132.7, 132.6, 130.0, 129.6, 123.0, 55.3, 44.2, 31.8, 22.7.
MS (EI): m/z calcd for C13H14BrClN3O [M + H]+:
342.0; found: 342.0.