References and Notes
<A NAME="RY00908ST-1A">1a </A>
Noyori R.
Asymmetric
Catalysis in Organic Synthesis
John Wiley and
Sons;
New York:
1994.
<A NAME="RY00908ST-1B">1b </A>
Comprehensive Asymmetric
Catalysis
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
New
York:
1999.
<A NAME="RY00908ST-1C">1c </A>
Catalytic
Asymmetric Synthesis
2nd ed.:
Ojima I.
Wiley;
New York:
2000.
<A NAME="RY00908ST-1D">1d </A>
Lauret C.
Tetrahedron: Asymmetry
2001,
12:
2359
For reviews, see:
<A NAME="RY00908ST-2A">2a </A>
Porter MJ.
Skidmore J.
Chem. Commun.
2000,
1215
<A NAME="RY00908ST-2B">2b </A>
Nemoto T.
Ohoshima T.
Shibasaki M.
J.
Synth. Org. Chem. Jpn.
2002,
60:
94
<A NAME="RY00908ST-2C">2c </A>
Lauret C.
Roberts SM.
Aldrichimica Acta
2002,
35:
47
<A NAME="RY00908ST-3A">3a </A>
Noyori R.
Aoki M.
Sato K.
Chem. Commun.
2003,
1977
<A NAME="RY00908ST-3B">3b </A>
Campos-Martin JM.
Blanco-Brieva G.
Fierro JLG.
Angew. Chem. Int. Ed.
2006,
45:
6962 ; and references cited therein
<A NAME="RY00908ST-4A">4a </A>
Juliá S.
Masana J.
Vega JC.
Angew. Chem., Int. Ed. Engl.
1980,
19:
929
<A NAME="RY00908ST-4B">4b </A>
Juliá S.
Guixer J.
Masana J.
Rocas J.
Colonna S.
Annuziata R.
Molinari H.
J. Chem. Soc., Perkin Trans. 1
1982,
1317
<A NAME="RY00908ST-5A">5a </A>
Arai S.
Tsuge H.
Shioiri T.
Tetrahedron Lett.
1998,
39:
7563
<A NAME="RY00908ST-5B">5b </A>
Arai S.
Tsuge H.
Oku M.
Miura M.
Shioiri T.
Tetrahedron
2002,
58:
1623
<A NAME="RY00908ST-5C">5c </A>
Dehmlow EV.
Düttmann S.
Neumann B.
Stammler H.-G.
Eur.
J. Org. Chem.
2002,
2087
<A NAME="RY00908ST-5D">5d </A>
Berkessel A.
Gasch N.
Glaubiz K.
Koch C.
Org. Lett.
2001,
3:
3839
<A NAME="RY00908ST-5E">5e </A>
Kelly DR.
Roberts SM.
Biopolymers
2006,
84:
74
<A NAME="RY00908ST-5F">5f </A>
Berkessel A.
Koch B.
Toniolo C.
Rainaldi M.
Broxterman QB.
Kaptein B.
Biopolymers
2006,
84:
90
<A NAME="RY00908ST-5G">5g </A>
Geller T.
Gerlach A.
Krüger CM.
Militzer H.-C.
Tetrahedron
Lett.
2004,
45:
5065
<A NAME="RY00908ST-5H">5h </A>
Geller T.
Krüger
CM.
Militzer H.-C.
Tetrahedron Lett.
2004,
45:
5069
<A NAME="RY00908ST-5I">5i </A>
Yi H.
Zou G.
Li Q.
Chen Q.
Tang J.
He M.-y.
Tetrahedron
Lett.
2005,
46:
5665
<A NAME="RY00908ST-5J">5j </A>
Hori K.
Tamura M.
Tani K.
Nishiwaki N.
Ariga M.
Tohda Y.
Tetrahedron Lett.
2006,
47:
3115
<A NAME="RY00908ST-5K">5k </A>
Sundén H.
Ibrahem I.
Córdova A.
Tetrahedron Lett.
2006,
47:
99
<A NAME="RY00908ST-5L">5l </A>
Zhao G.-L.
Ibrahem I.
Sundén H.
Córdova A.
Adv. Synth. Catal.
2006,
349:
1210
<A NAME="RY00908ST-6">6 </A>
Marigo M.
Franzén J.
Poulsen TB.
Zhuang W.
Jørgensen KA.
J. Am. Chem. Soc.
2005,
127:
6964
<A NAME="RY00908ST-7">7 </A>
Jew S.-s.
Lee JH.
Jeong B.-S.
Yoo M.-S.
Kim M.-J.
Lee J.
Choi S.-h.
Lee K.
Lah MS.
Park H.-g.
Angew. Chem. Int. Ed.
2005,
44:
1383
<A NAME="RY00908ST-8">8 </A>
Wang X.
Reisinger CM.
List B.
J.
Am. Chem. Soc.
2008,
130:
6070
<A NAME="RY00908ST-9A">9a </A>
Ishikawa T.
Isobe T.
Chem.
Eur. J.
2002,
8:
552
<A NAME="RY00908ST-9B">9b </A>
McManus JC.
Carey JS.
Taylor RJK.
Synlett
2003,
365
<A NAME="RY00908ST-9C">9c </A>
McManus JC.
Genski T.
Carey JS.
Taylor RJK.
Synlett
2003,
369:
<A NAME="RY00908ST-9D">9d </A>
Allingham MT.
Howard-Jones A.
Murphy PJ.
Thomas DA.
Caulkett PWR.
Tetrahedron
Lett.
2003,
44:
8677
<A NAME="RY00908ST-9E">9e </A>
Kumamoto T.
Ebine K.
Endo M.
Araki Y.
Fushimi Y.
Miyamoto I.
Ishikawa T.
Isobe T.
Fukuda K.
Heterocycles
2005,
66:
347
<A NAME="RY00908ST-9F">9f </A>
Ishikawa T.
Kumamoto T.
Synthesis
2006,
737
<A NAME="RY00908ST-9G">9g </A>
Kita T.
Shin B.
Hashimoto Y.
Nagasawa K.
Heterocycles
2007,
73:
241
<A NAME="RY00908ST-9H">9h </A>
Shin B.
Tanaka S.
Kita T.
Hashimoto Y.
Nagasawa K.
Heterocycles
2008,
76:
801
<A NAME="RY00908ST-9I">9i </A>
Terada M.
Nakano M.
Heterocycles
2008,
1049
<A NAME="RY00908ST-10A">10a </A>
Sohtome Y.
Hashimoto Y.
Nagasawa K.
Adv. Synth. Catal.
2005,
347:
1643
<A NAME="RY00908ST-10B">10b </A>
Sohtome Y.
Takemura N.
Iguchi T.
Hashimoto Y.
Nagasawa K.
Synlett
2006,
144
<A NAME="RY00908ST-10C">10c </A>
Sohtome Y.
Hashimoto Y.
Nagasawa K.
Eur.
J. Org. Chem.
2006,
2894
<A NAME="RY00908ST-10D">10d </A>
Sohtome Y.
Takemura N.
Takada K.
Takagi R.
Iguchi T.
Nagasawa K.
Chem. Asian J.
2007,
2:
1150
<A NAME="RY00908ST-10E">10e </A>
Takada K.
Takemura N.
Cho K.
Sohtome Y.
Nagasawa K.
Tetrahedron
Lett.
2008,
49:
1623
<A NAME="RY00908ST-11A">11a </A>
Sohtome Y.
Tanatani A.
Hashimoto Y.
Nagasawa K.
Chem.
Pharm. Bull.
2004,
52:
477
<A NAME="RY00908ST-11B">11b </A>
Sohtome Y.
Tanatani A.
Hashimoto Y.
Nagasawa K.
Tetrahedron Lett.
2004,
45:
5589
<A NAME="RY00908ST-11C">11c </A>
Maher DJ.
Connon SJ.
Tetrahedron
Lett.
2004,
45:
1301
<A NAME="RY00908ST-12">12 </A>
Howard-Jones A.
Murphy PJ.
Thomas DA.
J. Org. Chem.
1999,
64:
1039
<A NAME="RY00908ST-13A">13a </A>
Lu C.-S.
Hughes EW.
Giguère PA.
J. Am. Chem. Soc.
1941,
63:
1507
<A NAME="RY00908ST-13B">13b </A>
Aida K.
J.
Inorg. Nucl. Chem.
1963,
25:
165
<A NAME="RY00908ST-13C">13c </A>
Cooper M.
Heaney H.
Newbold AJ.
Sanderson WR.
Synlett
1990,
533
<A NAME="RY00908ST-13D">13d </A>
Heaney H.
Aldrichimica
Acta
1993,
26:
35
<A NAME="RY00908ST-14">14 </A>
Synthesis of Catalyst
1a and Spectral Data for 1a-e
To a solution
of guanidine (S ,S )-1f
¹0a (258 mg, 0.317
mmol) in CH2 Cl2 (3.0 mL) was added TFA (3.0
mL) at 0 ˚C. The reaction mixture was warmed to r.t. and
stirred for 2 h. The resulting mixture was concentrated in vacuo
to give diamine. To a solution of the diamine in THF (6.0 mL) was
added phenyl isocyanate (0.21 mL, 1.90 mmol), and the mixture was
stirred for 12 h. The resulting mixture was concentrated in vacuo,
and the residue was purified by flash column chromatography on silica
gel (n -hexane-EtOAc = 4:1
to 1:1, CHCl3 -MeOH = 9:1)
to give 1a as a TFA salt (Scheme
[¹ ]
). The counteranion of 1a was exchanged into Cl- by
treatment with sat. aq NH4 Cl and EtOAc solution, and
gave 1a as a HCl form in 81% yield
from 1f (219 mg, 0.257 mmol). Compound 1a : [α]D
²4 -41.2
(c 1.3, CHCl3 ). ¹ H
NMR (400 MHz, CD3 OD): δ = 7.33-7.10
(m, 18 H), 6.93 (t, J = 7.4
Hz, 2 H), 4.11 (br s, 2 H), 3.45-3.32 (m, 4 H), 3.16 (t, J = 7.3 Hz, 2
H), 3.03 (dd, J = 4.5,
14.1 Hz, 2 H), 2.79 (dd, J = 9.6,
13.7 Hz, 2 H), 1.59 (m, 2 H), 1.34-1.14 (m, 30 H), 0.88
(t, J = 7.3 Hz,
3 H). ¹³ C NMR (100 MHz, CD3 OD): δ = 158.51,
156.33, 140.52, 138.97, 130.22, 129.83, 129.68, 127.78, 123.67, 120.18,
52.46 (br), 47.63 (br), 43.12, 39.32, 33.09, 30.78 (br), 30.69,
30.66, 30.49, 30.39, 29.75, 27.99, 23.75, 14.48. ESI-HRMS: m/z calcd for C51 H74 N7 O2 [M + H+ ]:
816.5904; found: 816.5895. Compound 1b : [α]D
²5 -11.3
(c 1.1, CHCl3 ). ¹ H
NMR (400 MHz, CD3 OD): δ = 7.94 (s,
4 H), 7.44 (s, 2 H), 7.31-7.14 (m, 10 H), 4.14 (br s, 2
H), 3.41 (d, J = 5.0
Hz, 4 H), 3.18 (t, J = 7.3
Hz, 2 H), 3.07 (dd, J = 4.0,
13.9 Hz, 2 H), 2.80 (dd, J = 9.5,
13.9 Hz, 2 H), 1.61 (m, 2 H), 1.34-1.08 (m, 30 H), 0.88
(t, J = 6.9
Hz, 3 H). ¹³ C NMR (100 MHz, CD3 OD): δ = 157.82,
156.31, 142.99, 138.79, 133.13 (q, J
CF = 32.6
Hz), 130.14, 129.66, 127.81, 124.76 (d, J
CF = 271.3
Hz), 120.70, 118.98, 115.79, 52.66 (br) 47.46, 43.10, 39.20, 33.08,
30.75 (br), 30.61, 30.54, 30.47, 30.16, 29.64, 27.92, 23.74, 14.46. ESI-HRMS: m/z calcd for C55 H70 F12 N7 O2 [M + H+ ]: 1088.5399;
found: 1088.5370. Compound 1c : [α]D
²6 -24.5
(c 1.4, CHCl3 ). ¹ H
NMR (400 MHz, CD3 OD): δ = 7.32-7.17
(m, 10 H), 6.97 (d, J = 9.6
Hz, 4 H), 6.46 (t, J = 9.2
Hz, 2 H), 4.10 (br s, 2 H), 3.39 (d, J = 5.5
Hz, 4 H), 3.18 (t, J = 7.3
Hz, 2 H), 3.07 (dd, J = 4.6, 13.8
Hz, 2 H), 2.79 (dd, J = 9.6,
14.2 Hz, 2 H), 1.63 (m, 2 H), 1.35-1.07 (m, 30 H), 0.88
(t, J = 6.4
Hz, 3 H). ¹³ C NMR (100 MHz, CD3 OD): δ = 164.61
(dd, J
CF = 15.3,
243.4 Hz), 157.77, 156.22, 143.55 (t, J
CF = 13.5
Hz), 138.81, 130.18, 129.64, 127.77, 102.09 (dd, J
CF = 8.6,
21.1 Hz), 52.54 (br), 47.49 (br), 43.16, 39.22, 33.07, 30.78 (br),
30.71, 30.65, 30.48, 30.38, 29.76, 28.03, 23.74, 14.50. ESI-HRMS: m/z calcd for C51 H70 F4 N7 O2 [M + H+ ]:
888.5527; found: 888.5572. Compound 1d : [α]D
²5 -40.4
(c 1.1, CHCl3 ). ¹ H
NMR (400 MHz, CD3 OD): δ = 8.04 (s,
4 H), 7.47 (s, 2 H), 3.78 (br s, 2 H), 3.42 (dd, J = 13.8,
5.1 Hz, 2 H), 3.25 (m, 2 H), 3.17 (t, J = 7.4
Hz, 2 H), 1.94 (br, 2 H), 1.58 (m, 2 H), 1.33-1.08 (m, 30
H), 1.03 (d, J = 6.4
Hz, 6 H), 1.01 (d, J = 6.4
Hz, 6 H), 0.88 (t, J = 6.9 Hz,
3 H). ¹³ C NMR (100 MHz, CD3 OD): δ = 158.30,
156.31, 143.15, 133.20 (q, J
CF = 32.6
Hz), 128.84, 124.78 (d, J
CF = 272.2
Hz), 120.73, 118.84, 115.68, 55.92 (br), 46.04, 43.03, 33.08, 31.04
(br), 30.75 (br), 30.70, 30.62, 30.52, 30.48, 30.19, 29.80, 27.87,
23.74, 20.19, 17.62 14.46. ESI-HRMS: m/z calcd
for C47 H70 F12 N7 O2 [M + H+ ]: 992.5399;
found: 992.5373. Compound 1e : [α]D
²6 -8.9
(c 1.1, CHCl3 ). ¹ H
NMR (400 MHz, CD3 OD): δ = 8.04 (s,
4 H), 7.46 (s, 2 H), 3.91 (br s, 2 H), 3.41-3.14 (m, 6
H), 1.64 (m, 2 H), 1.29 (d, J = 6.9
Hz, 6 H), 1.27-1.10 (m, 30 H), 0.87 (t, J = 6.9
Hz, 3 H). ¹³ C NMR (100 MHz, CD3 OD): δ = 157.80,
156.25, 143.11, 133.15 (q, J
CF = 32.6
Hz), 128.84, 124.79 (d, J
CF = 272.2
Hz), 120.73, 119.00, 115.72, 47.05 (br), 43.13, 33.08, 30.75 (br),
30.70, 30.61, 30.52, 30.48, 30.14, 29.63, 27.90, 23.74, 18.34, 14.46.
ESI-HRMS: m/z calcd for C43 H62 F12 N7 O2 [M + H+ ]: 936.4773;
found: 936.4734.
Scheme 1
<A NAME="RY00908ST-15A">15a </A>
Schreiner PR.
Wittkopp A.
Org.
Lett.
2002,
4:
217
<A NAME="RY00908ST-15B">15b </A>
Wittkopp A.
Schreiner PR.
Chem. Eur. J.
2003,
9:
407
<A NAME="RY00908ST-16">16 </A>
We recycled the catalyst 1b five times under the conditions of entry
11 in Table
[¹ ]
.
In these reactions, the yields and enantioselectivities were as
follows: 2nd run: 95% with 90% ee; 3rd run: 99% with
90% ee; 4th run: 99% with 91% ee; and
5th run: 99% with 89% ee.
<A NAME="RY00908ST-17A">17a </A>
Lattanzi A.
Org. Lett.
2005,
7:
2579
<A NAME="RY00908ST-17B">17b </A>
Li Y.
Liu X.
Yang Y.
Zhao G.
J. Org. Chem.
2007,
72:
288
<A NAME="RY00908ST-17C">17c </A>
Ye J.
Wang Y.
Chen J.
Liang X.
Adv. Synth. Catal.
2004,
346:
691
<A NAME="RY00908ST-17D">17d </A>
Kumaraswamy G.
Sastry MNV.
Jena N.
Kumarb KR.
Vairamanic M.
Tetrahedron:
Asymmetry
2003,
14:
3797
<A NAME="RY00908ST-17E">17e </A>
Ooi T.
Ohara D.
Tamura M.
Maruoka K.
J. Am. Chem. Soc.
2004,
126:
6844
<A NAME="RY00908ST-18">18 </A>
Typical Procedure
for Asymmetric Epoxidation of 4a
A mixture of enone 4a (20.8 mg, 0.10 mmol) and guanidine-urea
organocatalyst (S ,S )-1b (5.6 mg, 0.005 mmol, 5 mol%) in
toluene (0.95 mL) was cooled at -10 ˚C. To the
mixture was added 1 M aq NaOH (0.050 mL, 0.050 mmol) and 30% aq
H2 O2 (0.051 mL, 0.50 mmol of H2 O2 ).
The mixture was stirred vigorously at -10 ˚C under
argon atmosphere for 6 h. To the reaction mixture was added sat.
aq NH4 Cl, and the organic layer was extracted with EtOAc.
The combined organic extracts were dried over MgSO4 ,
filtered, and concentrated in vacuo. The residue was purified by
flash column chromatography on silica gel (n -hexane-EtOAc = 100:1
to 10:1) to give epoxy ketone 5a (22.3
mg, 99%) and catalyst 1b was quantitatively
recovered (5.6 mg, >99%). The ee and absolute
configuration of the epoxy ketone 5a was
determined by HPLC using a chiral column.
Spectral
Data and HPLC Data for Epoxy Ketone 5a
[α]D
²4 -210.1
(c 0.83, CHCl3 ). ¹ H
NMR (400 MHz, CDCl3 ): δ = 8.02 (d, J = 6.9 Hz,
2 H), 7.63 (t, J = 7.8
Hz, 1 H), 7.49 (t, J = 7.8
Hz, 2 H), 7.45-7.35 (m, 5 H), 4.31 (d, J = 1.8
Hz, 1 H), 4.08 (d, J = 1.8
Hz, 1 H). HPLC separation conditions: Chiralcel OD-H, 0.46 cm (ϕ) × 25
cm (L), hexane-2-PrOH = 98:2, 1.00 mL/min, t
R (minor) = 19.5
min (2S ,3R ); t
R (major) = 20.4
min (2R ,3S ).¹7a
<A NAME="RY00908ST-19">19 </A>
In the case of aliphatic substituted
enones, enantioselec-tivities were moderate to low (ex. R¹ = Me,
R² = Ph, 99% yield
with 41% ee).
<A NAME="RY00908ST-20">20 </A>
NMR studies were performed in C6 D6 .
<A NAME="RY00908ST-21">21 </A>
Sohtome Y.
Takemura N.
Takagi R.
Hashimoto Y.
Nagasawa K.
Tetrahedron
2008,
64:
9423 ; and references cited therein