Synlett 2009(5): 755-758  
DOI: 10.1055/s-0028-1087821
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Convenient One-Pot Synthesis of N-Substituted 3-Trifluoroacetyl Pyrroles

Nilo Zanatta*a, Ana D. Woutersa, Leonardo Fantinela, Fabio M. da Silvaa, Rosemário Barichelloa, Pedro E. A. da Silvab, Daniela F. Ramosb, Helio G. Bonacorsoa, Marcos A. P. Martinsa
a Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
Fax: +55(55)32208756; e-Mail: zanatta@base.ufsm.br;
b Departamento de Patologia, Fundação Universidade Federal de Rio Grande, Rio Grande, RS, Brazil
Further Information

Publication History

Received 1 December 2008
Publication Date:
24 February 2009 (online)

Abstract

A new one-pot strategy for the synthesis of a series of new N-substituted 3-trifluoroacetyl pyrroles is presented. These compounds were obtained by the reaction of 3-trifluoroacetyl-4,5-dihydrofuran with primary amines, which generated 1,1,1-trifluoro-3-(2-hydroxyethyl)-4-alkylaminobut-3-en-2-one intermediates. In most cases these intermediates were not stable enough to be isolated. Thus, in the same reaction vessel they were directly submitted to oxidation with PCC (Corey’s reagent) to furnish 1,1,1-trifluoro-3-(2-ethanal)-4-alkylaminobut-3-en-2-ones, which under reflux underwent intramolecular cyclization to give the desired N-substituted 3-trifluoroacetyl pyrroles, in moderate yields. All of these pyrroles were tested against pan-susceptible Mycobacterium tuberculosis H37Rv and clinical isolates INH- and RMP-resistant strain and some of these compounds showed significant in vitro antimicrobial activity.

    References and Notes

  • 1 Morales GO. Méndez F. Miranda DL. Tetrahedron Lett.  2007,  48:  4515 
  • 2 Das B. Chowdhury N. Damodar K. Tetrahedron Lett.  2007,  48:  2867 
  • 3 Misra NC. Panda K. Ila H. Junjappa H. J. Org. Chem.  2007,  72:  1246 
  • 4 Pridmore SJ. Slatford PA. Aurélie D. Whittlesey MK. Williams JMJ. Tetrahedron Lett.  2007,  48:  5115 
  • 5 Marcotte FA. Lubell WD. Org. Lett.  2002,  4:  2601 
  • 6a Kawase M. Hirabayashi M. Koiwai H. Yamamoto K. Miyamae H. Chem. Commun.  1998,  641 
  • 6b Bray BL. Mathies PM. Naef RN. Solas DR. Tidwell TT. Artis DR. Muchowski JM. J. Org. Chem.  1990,  55:  6317 
  • 6c Wynne JH. Lloyd CT. Jensen SD. Boson S. Stalick WM. Synthesis  2004,  2277 
  • 7a Okada E. Masuda R. Hojo M. Heterocycles  1992,  34:  791 
  • 7b Druzhinin SV. Balenkova ES. Nenajdenko VG. Tetrahedron  2007,  63:  7753 
  • 8a Andrew RJ. Mellor JM. Tetrahedron  2000,  56:  7267 
  • 8b Okada E. Kinomura T. Takeuchi H. Hojo M. Heterocycles  1997,  44:  349 
  • 8c Soufyane M. Mirand C. Levy J. Tetrahedron Lett.  1993,  34:  7737 
  • 9a Rudenko AP. Aristov SA. Vasilyev AV. Russ. J. Org. Chem.  2004,  40:  1221 
  • 9b Aristov SA. Vasilyev AV. Rudenko AP. Russ. J. Org. Chem.  2006,  42:  66 
  • 10 Nenajdenko VG. Statsuk AV. Balenkova ES. Chem. Heterocycl. Compd.  2003,  5:  598 
  • 11 Peng W.-M. Zhu S.-Z. J. Fluorine Chem.  2002,  116:  81 
  • 12 Matsumoto N. Takahashi M. Tetrahedron Lett.  2005,  46:  5551 
  • 13a Okada E. Masuda R. Hojo M. Yoshida R. Heterocycles  1992,  34:  1435 
  • 13b Elguero R. Jacquier B. Shimizu B. Bull. Soc. Chim. Fr.  1967,  2996 
  • 13c Elguero R. Jacquier B. Shimizu B. Bull. Soc. Chim. Fr.  1970,  1585 
  • 13d Shaitanova EN. Gerus II. Kukhar VP. Tetrahedron Lett.  2008,  49:  1184 
  • 14 Jones RA. Bean GP. In The Chemistry of Pyrroles   Academic Press; London: 1977 and references cited therein. 
  • 15a Pavri NP. Trudell ML. J. Org. Chem.  1997,  62:  2649 
  • 15b Chen N. Lu Y. Gadamasetti K. Hurt CR. Norman MH. Fotsch C. J. Org. Chem.  2000,  65:  2603 
  • 15c Marcotte F.-A. Rombouts FJR. Lubell WD. J. Org. Chem.  2003,  68:  6984 
  • 15d Kagoshima H. Akiyama T. J. Am. Chem. Soc.  2000,  122:  11741 
  • 15e Wasserman HH. Power P. Petersen AK. Tetrahedron Lett.  1996,  37:  6657 
  • 16a Nunomoto S. Kawakami Y. Yamashita Y. Takeuchi H. Egushi S. J. Chem. Soc., Perkin Trans. 1  1990,  111 
  • 16b Bourak M. Gallo R. Heterocycles  1990,  31:  401 
  • For recent examples, see:
  • 17a Salamone SG. Dudley GB. Org. Lett.  2005,  7:  4443 
  • 17b Song G. Wang B. Wang G. Kang Y. Yang T. Yang L. Synth. Commun.  2005,  35:  1051 
  • 17c Dieltiens N. Stevens CV. De Vos D. Allaert B. Drozdzak R. Verpoort F. Tetrahedron Lett.  2004,  45:  8995 
  • 17d Tracey MR. Hsung RP. Lambert RH. Synthesis  2004,  918 
  • 17e Wang B. Gu Y. Luo C. Yang T. Yang L. Suo J. Tetrahedron Lett.  2004,  45:  3417 
  • 17f Dhawan R. Arndtsen BA. J. Am. Chem. Soc.  2004,  126:  468 
  • 17g Abdelrazek F. Synth. Commun.  2005,  35:  2251 
  • 17h Delayen A. Goossens L. Houssin R. Henichart JP. Heterocycles  2005,  65:  1673 
  • 18 Black BC. Hollingworth RM. Ahammadsahib KY. Kukel CD. Donovan S. Pestic. Biochem. Physiol.  1994,  50:  115 
  • 20 Colla A. Martins MAP. Clar G. Krimmer S. Fisher P. Synthesis  1991,  483 
  • 21a Corey EJ. Sugs JW. Tetrahedron Lett.  1975,  32:  2647 
  • 21b Hunsen M. Tetrahedron Lett.  2005,  46:  1651 
  • 21c Dugger RW. Ragan JA. Brown DH. Org. Process Res. Dev.  2005,  9:  253 
  • 21d Rauter AD. Piedade F. Almeida T. Ramalho R. Ferreira MJ. Resende R. Amado J. Perreira H. Justino J. Neves H. Silva FVM. Canda T. Carbohydr. Res.  2004,  339:  1889 
  • 21e Li SH. Li TS. Steroids  1998,  63:  76 
  • 21f Rauter AP. Fernandes AC. Czernecki S. Valery JM. J. Org. Chem.  1996,  61:  3594 
  • 21g Rauter A. Ferreira M. Borges C. Duarte T. Piedade F. Silva M. Santos H. Carbohydr. Res.  2000,  325:  1 
  • 22 Choudary BM. Prosad AD. Bhuma V. Swapna V. J. Org. Chem.  1992,  57:  5841 
  • 23a Corey EJ. Schmidt G. Tetrahedron Lett.  1979,  20:  399 
  • 23b Czernecki S. Georgoulis C. Stevens CL. Vijayakumaran K. Tetrahedron Lett.  1985,  26:  1699 
  • 24 Aydin F. Turunc E. J. Serb. Chem. Soc.  2007,  72:  129 
  • 27 Zanatta N. Barichello R. Pauletto MM. Bonacorso HG. Martins MAP. Tetrahedron Lett.  2003,  44:  961 
  • 28 Zanatta N. Schneider MFM. Schneider PH. Wouters AD. Bonacorso HG. Martins MAP. Wessjohann LA. J. Org. Chem.  2006,  71:  6996 
19

Unpublished results: compound 5f exhibited activity against H37Rv and RMPr (MIC = 12.5 µg/mL) and INHr (MIC = 50 µg/mL); 5h exhibited activity against H37Rv and RMPr (MIC = 12.5 µg/mL) and INHr (MIC = 25.0 µg/mL); 5l exhibited activity against H37Rv (MIC = 6.25 µg/mL) and RMPr and INHr (MIC = 12.5 µg/mL); 5m exhibited activity against H37Rv and RMPr (MIC = 6.25 µg/mL) and INHr (MIC = 12.5 µg/mL).

25

Synthesis of N-Substituted 3-Trifluoroacetyl Pyrroles 5 - General Procedure
To a solution of 3-trifluoroacetyl-4,5-dihydrofuran 1 (0.50 g, 3.0 mmol) in CH2Cl2 (5 mL), amines 2a,b (approx. 6.0 mmol), amines 2c-r (3.0 mmol), and amines 2s-u (1.5 mmol) were added under magnetic stirring, and the reaction was stirred for 30 min at r.t. After this period, PCC (4.5 mmol) in CH2Cl2 (5 mL) was added, and the reaction mixture was refluxed for 3 h. For amines 2a,b, before the addition of PCC, the reaction was extracted with CH2Cl2 (3 × 15 mL) and dried with MgSO4. The solvent was evaporated by rotary evaporator, and the reaction residue was treated with 1 M solution of NaOH and extracted with Et2O (3 × 50 mL). The combined organic layers were washed with 1 M NaOH solution (2 × 50 mL) and distilled H2O (1 × 50 mL). The organic phase was dried with anhyd MgSO4, evaporated, and purified by column chromatography using basic alumina (60 g) with a plug of active charcoal and eluted with Et2O (50 mL).

26

Spectroscopic Data of Selected Compounds1-Methyl-3-trifluoroacetylpyrrole (5b) ¹H NMR (200 MHz, CDCl3): δ = 7.4 (s, 1 H), 6.7 (s, 1 H), 6.6 (s, 1 H), 3.7 (s, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 175.0 (q, ² J CF = 35.3 Hz), 130.1, 124.3, 117.8, 116.9 (q, ¹ J CF = 288.7 Hz), 110.9, 36.8. GC-MS (IE, 70eV): m/z (%) = 117 (68) [M+], 108 (100), 80 (30). ESI-HRMS: m/z calcd for C6H4F3NO [M + H]+: 178.0479; found: 178.0471.
1-(Ethan-1-ol-2-yl)-3-trifluoroacetylpyrrole (5g)
¹H NMR (400 MHz, CDCl3): δ = 7.5 (s, 1 H), 6.7 (m, 2 H), 4 (t, 1 H, J = 9.2 Hz), 3.9 (t, 1 H, J = 9.2 Hz). ¹³C NMR (100 MHz, CDCl3): δ = 175.4 (q, ² J CF = 35.7 Hz), 130.1, 123.8, 117.8, 116.9 (q, ¹ J CF = 288.8 Hz), 110.9, 61.8, 52.5. GC-MS (IE, 70eV): m/z (%) = 207 (25) [M+], 138 (100), 94 (57). ESI-HRMS: m/z calcd for C9H8F3NO [M + H]+: 208.0585; found: 208.0576.
1-(2,2-Dimethyl-etan-1-ol-2-yl)-3-trifluoroacetylpyrrole (5k)
¹H NMR (400 MHz, CDCl3): δ = 7.6 (s, 1 H), 6.9 (m, 1 H), 6.7 (m, 2 H), 3.6 (s, 2 H), 1.5 (s, 6 H). ¹³C NMR (100 MHz, CDCl3): δ = 175.4 (q, ² J CF = 35 Hz), 127.5, 121, 117.3, 116.9 (q, ¹ J CF = 289 Hz), 110.5, 70.4, 60.2, 24.5. GC-MS (IE 70eV): m/z (%) = 235 (30) [M+], 204 (97), 94 (100). ESI-HRMS: m/z calcd for C10H12F3NO2 [M + H]+: 236.0898; found: 236.0891.
1-(Ethan-2-dimethylamino-1-yl)-3-trifluoroacetyl-pyrrole (5q)
¹H NMR (400 MHz, CDCl3): δ = 7.55 (s, 1 H), 6.74 (m, 2 H), 4.01 (t, 2 H, J = 3.2 Hz) 2.67 (t, 2 H, J = 3.1 Hz), 2.27 (s, 6 H). ¹³C NMR (100 MHz, CDCl3): δ = 175.2 (q, ² J CF = 35 Hz), 129.6, 123.5, 117.8, 116.9 (q, ¹ J CF = 288 Hz), 110.7, 59.6, 48.5, 45.4. GC-MS (IE, 70eV): m/z (%) = 235 (100) [MH+], 165 (20). ESI-HRMS: m/z calcd for C10H13F3N2O [M + H]+: 235.1058; found: 235.1058.
1,2-Bis-3-trifluoroacetylpyrrole-1-yl-ethane (5s)
¹H NMR (400 MHz, CDCl3): δ = 7.14 (s, 1 H), 6.77 (s, 1 H), 6.50 (m, 1 H), 4.30 (s, 2 H). ¹³C NMR (100 MHz, CDCl3): δ = 175.2 (q, ² J CF = 35 Hz), 128.8, 122.8, 118.8, 116.7 (q, ¹ J CF = 288 Hz), 111.9, 52.1. GC-MS (IE, 70eV): m/z (%) = 352 (31) [M+], 283 (100), 176 (26), 107 (25). ESI-HRMS: m/z calcd for C14H10F6N2O2 [M + H]+: 367.0881; found: 367.0876.