Subscribe to RSS
DOI: 10.1055/s-0028-1087924
Micellar-System-Mediated Direct Fluorination of Ketones in Water
Publication History
Publication Date:
16 February 2009 (online)

Abstract
A micellar system was developed and applied for direct regioselective fluorination of a variety of cyclic and acyclic ketones to α-fluoroketones in water as reaction medium with Selectfluor F-TEDA-BF4 as fluorinating reagent. The inexpensive ionic amphiphile sodium dodecyl sulfate (SDS) was found to be an excellent promoter for fluorofunctionalization of hydrophobic ketones without prior activation or use of acid catalysts.
Key words
ketones - halogenation - micelles - F-TEDA-BF4 - water
- 1a
Hudlicky M.Pavlath AE. Chemistry of Organic Fluorine Compounds II. A Critical Review ACS Monograph 187: American Chemical Society; Washington DC: 1995.Reference Ris Wihthout Link - 1b
Kirk KL. J. Fluorine Chem. 2006, 127: 1013 ; and references cited thereinReference Ris Wihthout Link - 1c
Hagmann WK.
J. Med. Chem. 2008, 51: 4359 ; and references cited thereinReference Ris Wihthout Link - 2a
Wakefield B. Innovat. Pharmaceut. Technol. 2000, 74 ; http://www.iptonline.com/articles/public/IPTFOUR74NP.pdfReference Ris Wihthout Link - 2b
Müller K.Faeh C.Diederich F. Science 2007, 317: 1881Reference Ris Wihthout Link - 3
Borodin A. Justus Liebigs Ann. Chem. 1863, 126: 58 - 4a
Lal GS.Pez GP.Syvret RG. Chem. Rev. 1996, 96: 1737Reference Ris Wihthout Link - 4b
Furin GG.Fainzilberg AA. Russ. Chem. Rev. 1999, 68: 653Reference Ris Wihthout Link - 4c
Modern
Organofluorine Chemistry - Synthetic Aspects, In Advances in Organic Synthesis
Vol.
2:
Lalli KK. . Bentham Science; Amsterdam: 2006.Reference Ris Wihthout Link - 5a
Stavber S.Zupan M. Modern Organofluorine Chemistry - Synthetic Aspects, In Advances in Organic Synthesis Vol. 2:Lalli KK. . Bentham Science; Amsterdam: 2006. p.213-268 ; and references cited thereinReference Ris Wihthout Link - 5b
Singh PR.Shreeve MJ. Acc. Chem. Res. 2004, 37: 31Reference Ris Wihthout Link - 5c
Nyffeler PT.Duron SG.Burkart MD.Vincent SP.Wong C.-H. Angew. Chem. Int. Ed. 2004, 44: 192Reference Ris Wihthout Link - 6a
Lancaster M. Green Chemistry RSC; Cambridge: 2002.Reference Ris Wihthout Link - 6b
Anastas PT.Warner JC. Green Chemistry: Theory and Practice Oxford University Press; New York: 1998.Reference Ris Wihthout Link - 6c
Sheldon RA. Green Chem. 2005, 7: 267Reference Ris Wihthout Link - 6d
Clark JH.Tavener S. Org. Process Res. Dev. 2007, 11: 149 ; and references cited thereinReference Ris Wihthout Link - 7a
Organic Reactions in Water: Principles, Strategies
and Applications
Lindström UM. Blackwell; Oxford: 2007.Reference Ris Wihthout Link - 7b
Herrerias CI.Yao X.Li Z.Li C.-J. Chem. Rev. 2007, 107: 2546Reference Ris Wihthout Link - 7c
Dallinger D.Kappe CO. Chem. Rev. 2007, 107: 2563Reference Ris Wihthout Link - 8a
Narayan S.Muldoon J.Finn MG.Fokin VV.Kolb CH.Sharpless KB. Angew. Chem. Int. Ed. 2005, 44: 3275Reference Ris Wihthout Link - 8b
Hayashi Y. Angew. Chem. Int. Ed. 2006, 45: 8103Reference Ris Wihthout Link - 8c
Klijn JE.Engberts JBFN. Nature (London) 2005, 435: 746Reference Ris Wihthout Link - 9a
Engberts JBFN. In Organic Reactions in Water: Principles, Strategies and ApplicationsLindström UM. Blackwell; Oxford: 2007. p.47-55 ; and references cited thereinReference Ris Wihthout Link - 9b
Sijbren O.Engberts JBFN. Org. Biomol. Chem. 2003, 1: 2809 ; and references cited thereinReference Ris Wihthout Link - 10a
Breslow R. Acc. Chem. Res. 1991, 24: 159Reference Ris Wihthout Link - 10b
Lindström UM.Andersson F. Angew. Chem. Int. Ed. 2006, 45: 548Reference Ris Wihthout Link - 11a
Breslow R. Acc. Chem. Res. 2004, 37: 471Reference Ris Wihthout Link - 11b
Luche JL. Synthetic Organic Sonochemistry Plenum Press; New York: 1998.Reference Ris Wihthout Link - 11c
Tascioglu S. Tetrahedron 1996, 52: 11113Reference Ris Wihthout Link - 11d
Kobayashi S.Manabe K. Acc. Chem. Res. 2002, 35: 209Reference Ris Wihthout Link - 12a
Dwars T.Paetzold E.Oehme G. Angew. Chem. Int. Ed. 2005, 44: 7174 ; and references cited thereinReference Ris Wihthout Link - 12b
Ogawa C.Kobayashi S. In Organic Reactions in Water: Principles, Strategies and ApplicationsLindström UM. Blackwell; Oxford: 2007. p.79-91Reference Ris Wihthout Link - 12c
Bunton CA.Nome F.Quina FH.Romsted LS. Acc. Chem. Res. 1991, 24: 359Reference Ris Wihthout Link - 13a
Jereb M.Zupan M.Stavber S. Green. Chem. 2004, 7: 100Reference Ris Wihthout Link - 13b
Pavlinac J.Zupan M.Stavber S. J. Org. Chem. 2006, 71: 1027Reference Ris Wihthout Link - 13c
Kralj P.Zupan M.Stavber S. J. Org. Chem. 2006, 71: 3880Reference Ris Wihthout Link - 13d
Pavlinac J.Zupan M.Stavber S. Synthesis 2006, 2603Reference Ris Wihthout Link - 13e
Pravst I.Zupan M.Stavber S. Tetrahedron Lett. 2006, 47: 4707Reference Ris Wihthout Link - 13f
Podgoršek A.Stavber S.Zupan M.Iskra J. Green Chem. 2007, 9: 1212Reference Ris Wihthout Link - 14
Taylor SD.Kotoris CC.Hum G. Tetrahedron 1999, 55: 12431 - 15a
Stavber S.Zupan M. Tetrahedron Lett. 1996, 37: 3591Reference Ris Wihthout Link - 15b
Stavber S.Jereb M.Zupan M. Chem. Commun. 2000, 1323Reference Ris Wihthout Link - 15c
Stavber S.Jereb M.Zupan M. Synthesis 2002, 2609Reference Ris Wihthout Link - 15d
Stavber G.Zupan M.Jereb M.Stavber S. Org. Lett. 2004, 6: 4973Reference Ris Wihthout Link - 16a
Duplatre G.Ferreira-Marques MF.da Graça-Miguel M. J. Phys. Chem. 1996, 100: 16608Reference Ris Wihthout Link - 16b
Wang T.-Z.Mao S.-Z.Miao X.-J.Zhao S.Yu J.-Y.Du Y.-R. J. Colloid Interface Sci. 2001, 241: 465Reference Ris Wihthout Link - 16c
Cui X.Mao S.Liu M.Yuan H.Du Y. Langmuir 2008, 24: 10771Reference Ris Wihthout Link - 17a
Syvret RG.Kathleen MB.Nguyen TP.Bulleck VL.Rieth RD. J. Org. Chem. 2002, 67: 4487Reference Ris Wihthout Link - 17b
Ye C.Shreeve JM. J. Org. Chem. 2004, 69: 8561Reference Ris Wihthout Link - 18
Keeffe JR.Kresge AJ.Schepp NP. J. Am. Chem. Soc. 1990, 112: 4862 - 20
Thomas MG.Suckling CJ.Pitt AR.Suckling KE. J. Chem. Soc., Perkin Trans. 1 1999, 3191 - 21 The graphical abstract drawing was
inspired by that of the article:
Manabe K.Iimura S.Sun X.-M.Kobayashi S. J. Am. Chem. Soc. 2002, 124: 11971 - 22
Stavber S.Zupan M. J. Org. Chem. 1987, 52: 5022 - 23
Resnati G.DesMarteau DD. J. Org. Chem. 1991, 56: 4925 - 24
Welch JT.Seper KW. J. Org. Chem. 1988, 53: 2991
References and Notes
General Procedure
for the Direct Fluorination of Ketones in SDS Aqueous Micellar System
Ketone
(1 mmol) was placed in a glass flask (25 mL) equipped with a magnetic
stirrer. Then, H2O (5 mL) was added and stirred for a
few minutes. An appropriate amount of SDS (144 mg, 0.5 mmol or 288
mg, 1 mmol; see Table
[³]
) was
then added to the heterogeneous reaction system and heated to 80 ˚C
during rapid stirring. When the reaction system reached 80 ˚C,
F-TEDA-BF4 (390 mg, 1.1 mmol) was added in two portions
over an interval of 1 h, and stirred and held at 80 ˚C
until the KI test showed consumption of the fluorinating reagent.
When reaction was complete, the reaction system was cooled to r.t.,
and the resulting suspension was extracted with Et2O
(2 × 15 mL). The combined ether phases
were dried over anhyd Na2SO4. After the removal
of the solvent under reduced pressure, the crude products obtained
were identified with ¹H NMR, ¹9F
NMR, and MS analysis and purified by silica gel column chromatography
or preparative TLC (SiO2, CH2Cl2,
and a few drops of EtOH) to afford pure α-fluoro ketones.
The spectroscopic data of the products were in agreement with those
reported in the literature.
Spectroscopic
Data for Representative Compounds
1-Fluoro-1-phenylpropan-2-one
²²
(21)
Liquid product. ¹H
NMR (300 MHz, CDCl3): δ = 2.23
(d, J = 4.0
Hz, 3 H, Me), 5.68 (d, J = 48.7
Hz, 1 H, CHF), 7.40 (br s, 5 H, ArH). ¹9F NMR
(285 MHz, CDCl3): δ = -183.14 (dq, J = 48.7,
4.0 Hz). ¹³C NMR (76.2 MHz, CDCl3): δ = 25.13
(Me), 95.84 (d, J = 187.8
Hz, C-1), 126.00 (d, J = 7.0
Hz), 128.9, 129.36 (d, J = 2.3
Hz), 133.94 (d, J = 20.6 Hz),
204.55 (d, J = 26.7
Hz, CO). MS (EI, 70eV):
m/z (%) = 152
(6) [M+], 110 (10), 109 (100),
83 (20).
1-Fluoro-1,1-diphenyl-propan-2-one
²³
(23)
Mp
58.5-60.0 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 2.41
(d, J = 5.9 Hz, 3 H, Me), 7.37
(br s, 10 H, ArH). ¹9F NMR (285 MHz, CDCl3): δ = -143.62
(q, J = 5.9
Hz). ¹³C NMR (76.2 MHz, CDCl3): δ = 26.71
(Me), 102.17 (d, J = 185.8
Hz,
C-1), 126.64 (d, J = 7.4
Hz), 128.34, 128.77 (d, J = 2.0
Hz), 137.54 (d, J = 22.8
Hz), 206.43 (d, J = 32.7
Hz, CO).
MS (EI, 70eV): m/z (%) = 185
(100) [M+ - COMe],
151 (11).
3-Fluoro-4-phenylbutan-2-one
²4
(27)
Liquid
product. ¹H NMR (300 MHz, CDCl3): δ = 2.13
(d, J = 4.9
Hz, 3 H, Me), 3.01-3.21 (m, 2 H, CH2), 4.93
(ddd, J = 48.5,
6.0, 3.0 Hz, 1 H, CHF), 7.21-7.34 (m, 5 H, ArH). ¹9F
NMR (285 MHz, CDCl3): δ = -188.66
(dtq, J = 48.5, 23.2,
5.0 Hz). ¹³C NMR (76.2 MHz, CDCl3): δ = 26.42 (Me),
38.10 (d, J = 20.6
Hz, C-4), 95.89 (d, J = 187.3
Hz,
C-3), 127.10, 128.57, 129.49, 135.28, 209.98 (d, J = 26.7 Hz,
CO). MS (EI, 70eV): m/z (%) = 166
(100) [M+], 146 (100), 123
(15), 91 (77), 77 (41).