References and Notes
<A NAME="RW15208ST-1A">1a</A>
Barrett GC.
Chemistry
and Biochemistry of the Amino Acids
Chapman
and Hall;
London:
1985.
<A NAME="RW15208ST-1B">1b</A>
Jones JH.
Amino Acids and Peptides
RCS;
London:
1992.
For recent reviews, see:
<A NAME="RW15208ST-2A">2a</A>
Najera C.
Sansano JM.
Chem. Rev.
2007,
107:
4584
<A NAME="RW15208ST-2B">2b</A>
Maruoka K.
Ooi T.
Chem. Rev.
2003,
103:
3013
<A NAME="RW15208ST-2C">2c</A>
O’Donnell MJ.
Acc. Chem. Res.
2004,
37:
506
<A NAME="RW15208ST-2D">2d</A>
Lygo B.
Andrews BI.
Acc. Chem. Res.
2004,
37:
518
<A NAME="RW15208ST-2E">2e</A>
O’Donnell MJ.
Aldrichimica Acta
2001,
34:
3
<A NAME="RW15208ST-3A">3a</A>
O’Donnell MJ.
Boniece JM.
Earp SE.
Tetrahedron Lett.
1978,
2641
<A NAME="RW15208ST-3B">3b</A>
O’Donnell MJ.
Eckrich TM.
Tetrahedron
Lett.
1978,
4625
<A NAME="RW15208ST-4A">4a</A>
Ryoda A.
Yajima N.
Haga T.
Kumamoto T.
Nakanishi W.
Kawahata M.
Yamaguchi K.
Ishikawa T.
J. Org.
Chem.
2008,
73:
133
<A NAME="RW15208ST-4B">4b</A>
Saito S.
Tsubogo T.
Kobayashi S.
J.
Am. Chem. Soc.
2007,
129:
5364
<A NAME="RW15208ST-4C">4c</A>
Reddy VJ.
Roforth MM.
Tan C.
Reddy MVR.
Inorg.
Chem.
2007,
46:
381
<A NAME="RW15208ST-4D">4d</A>
Arai S.
Takahashi F.
Tsuji R.
Nishida A.
Heterocycles
2006,
67:
495
<A NAME="RW15208ST-4E">4e</A>
Chinchilla R.
Mazón P.
Nájera C.
Ortega FJ.
Yus M.
ARKIVOC
2005,
(νi):
222
<A NAME="RW15208ST-4F">4f</A>
Rueffer ME.
Fort LK.
MacFarland DK.
Tetrahedron: Asymmetry
2004,
15:
3297
<A NAME="RW15208ST-4G">4g</A>
Ohshima T.
Shibuguchi T.
Fukuta Y.
Shibasaki M.
Tetrahedron
2004,
60:
7743
<A NAME="RW15208ST-4H">4h</A>
Siebum
AHG.
Tsang RKF.
van der Steen R.
Raap J.
Lugtenburg J.
Eur.
J. Org. Chem.
2004,
4391
<A NAME="RW15208ST-4I">4i</A>
Akiyama T.
Hara M.
Fuchibe K.
Sakamoto S.
Yamaguchi K.
Chem.
Commun.
2003,
1734
<A NAME="RW15208ST-4J">4j</A>
Corey
EJ.
Noe MC.
Org.
Synth.
2003,
80:
34
<A NAME="RW15208ST-4K">4k</A>
Shibuguchi T.
Fukuta Y.
Akachi Y.
Sekine A.
Ohshima T.
Shibasaki M.
Tetrahedron Lett.
2002,
43:
9539
<A NAME="RW15208ST-4L">4l</A>
Ishikawa T.
Araki Y.
Kumamoto T.
Seki H.
Fukuda K.
Isobe T.
Chem. Commun.
2001,
245
<A NAME="RW15208ST-4M">4m</A>
O’Donnell MJ.
Delgado F.
Dominguez E.
de Blas J.
Scott WL.
Tetrahedron: Asymmetry
2001,
12:
821
<A NAME="RW15208ST-4N">4n</A>
Tzalis D.
Knochel P.
Tetrahedron Lett.
1999,
40:
3685
<A NAME="RW15208ST-4O">4o</A>
Corey
EJ.
Noe MC.
Xu F.
Tetrahedron Lett.
1998,
39:
5347
<A NAME="RW15208ST-4P">4p</A>
Lopez A.
Moreno-Mañas M.
Pleixats R.
Roglans A.
Ezquerra J.
Pedregal C.
Tetrahedron
1996,
52:
8365
<A NAME="RW15208ST-4Q">4q</A>
Moreno-Mañas M.
Pleixats R.
Roglans A.
Liebigs Ann.
1995,
1807
<A NAME="RW15208ST-5A">5a</A>
Arai S.
Tokumaru K.
Aoyama T.
Chem. Pharm. Bull.
2004,
52:
646
<A NAME="RW15208ST-5B">5b</A>
Zhang F.-Y.
Corey EJ.
Org. Lett.
2000,
2:
1097
<A NAME="RW15208ST-6A">6a</A>
Shibuguchi T.
Mihara H.
Kuramochi A.
Sakuraba S.
Ohshima T.
Shibasaki M.
Angew.
Chem. Int. Ed.
2006,
45:
4635
<A NAME="RW15208ST-6B">6b</A>
Wannaporn D.
Ishikawa T.
Mol. Diversity
2005,
9:
321
<A NAME="RW15208ST-6C">6c</A>
Lygo B.
Allbutt B.
Kirton EHM.
Tetrahedron Lett.
2005,
46:
4461
<A NAME="RW15208ST-6D">6d</A>
Tullis JS.
Laufersweiler MJ.
VanRens JC.
Natchus MG.
Bookland RG.
Almstead NG.
Pikul S.
De B.
Hsieh LC.
Janusz MJ.
Branch TM.
Peng SX.
Jin YY.
Hudlicky T.
Oppong K.
Bioorg.
Med. Chem. Lett.
2001,
11:
1975
The benzaldehyde derived glycine
imines have been widely used as precursor of 1,3-dipole in [3+2] reactions.
For recent examples, see:
<A NAME="RW15208ST-7A">7a</A>
Yan X.-X.
Peng Q.
Zhang Y.
Zhang K.
Hong W.
Hou X.-L.
Wu Y.-D.
Angew. Chem. Int. Ed.
2006,
45:
1979
<A NAME="RW15208ST-7B">7b</A>
Xue M.-X.
Zhang X.-M.
Gong L.-Z.
Synlett
2008,
691
For reviews, see:
<A NAME="RW15208ST-8A">8a</A>
Barrett AGM.
Graboski GG.
Chem.
Rev.
1986,
86:
751
<A NAME="RW15208ST-8B">8b</A>
Berner OM.
Tedeschi L.
Enders D.
Eur. J. Org. Chem.
2002,
1877
<A NAME="RW15208ST-9">9</A>
Rowley M.
Leeson PD.
Williams BJ.
Moore KW.
Baker R.
Tetrahedron
1992,
48:
3557
<A NAME="RW15208ST-10">10</A>
Zindel J.
de Meijere A.
Synthesis
1994,
190
<A NAME="RW15208ST-11A">11a</A>
Ayerbe M.
Arrieta A.
Cossío FP.
Linden A.
J. Org. Chem.
1998,
63:
1795
<A NAME="RW15208ST-11B">11b</A>
Vivanco S.
Lecea B.
Arrieta A.
Prieto P.
Morao I.
Linden A.
Cossío FP.
J.
Am. Chem. Soc.
2000,
122:
6078
<A NAME="RW15208ST-12">12</A>
Cashin AL.
Torrice MM.
McMenimen KA.
Lester HA.
Dougherty DA.
Biochemistry
2007,
46:
630
<A NAME="RW15208ST-13A">13a</A>
Lu S.-F.
Du D.-M.
Xu J.
Zhang S.-W.
J. Am.
Chem. Soc.
2006,
128:
7418
<A NAME="RW15208ST-13B">13b</A>
Lu S.-F.
Du D.-M.
Xu J.
Org. Lett.
2006,
8:
2115
<A NAME="RW15208ST-13C">13c</A>
Liu H.
Xu J.
Du D.-M.
Org.
Lett.
2007,
9:
4725
<A NAME="RW15208ST-13D">13d</A>
Liu H.
Lu S.-F.
Xu J.
Du D.-M.
Chem. Asian J.
2008,
3:
1111
<A NAME="RW15208ST-13E">13e</A>
Zhou W.-M.
Liu H.
Du D.-M.
Org.
Lett.
2008,
10:
2817
<A NAME="RW15208ST-14">14</A>
Ono N.
The Nitro Group in Organic Synthesis
Wiley-VCH;
New
York:
2001.
<A NAME="RW15208ST-15">15</A>
General Procedure
for Michael Addition of Glycine Imines to Aromatic Nitroalkenes
To
a stirred solution of nitroalkene (1.2 mmol), LiOTf (16 mg, 0.1
mmol), and ethyl diphenylmethyleneiminoacetate (267 mg, 1 mmol)
or tert-butyl diphenylmethyleneimino-acetate
(295 mg, 1 mmol) in dry THF (1 mL) was added DBU (15 mg, 0.1 mmol)
in dry THF (1 mL). The mixture was stirred at r.t. for 24 h. After
being quenched by H2O, the mixture was extracted by CH2Cl2.
The organic phase was separated and dried with Na2SO4.
The diastereoselectivity was determined by NMR analysis of curde
product. The sample for analysis was purified on column chromatography (SiO2,
200-300 mesh) using PE-EtOAc (20:1) as eluent
and recrystallized from Et2O and PE.
syn
-Ethyl 2-Diphenylmethyleneimino-4-nitro-3-phenyl-butanoate (5a)
According to the general
procedure, a white solid was obtained; mp 84-85 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.20
(t, J = 7.2
Hz, 3 H), 4.11-4.16 (m, 2 H), 4.27-4.38 (m, 2
H), 5.14-5.18 (m, 2 H), 6.60-6.62 (d, J = 6.9 Hz,
2 H), 7.14-7.48 (m, 1 1H), 7.64 (d, J = 6.9
Hz, 2 H). IR: 1735, 1551, 1446, 1368, 1316, 1290, 1190, 1024, 695
cm-¹. MS (70 eV, EI): m/z (%) = 416
(3) [M+], 343 (10), 296 (23),
267 (21), 266 (100), 193 (47), 165 (50). Anal. Calcd (%)
for C25H24N2O4: C, 72.10;
H, 5.81; N, 6.73. Found: C, 71.74; H, 5.83; N, 6.55.2.
syn
-Ethyl 2-Diphenylmethyleneimino-3-(4-methylphenyl)-4-nitrobutanoate (5b)
According to the general
procedure, a white solid was obtained; mp 102-103 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.19
(t, J = 6.9
Hz, 3 H), 2.29 (s, 3 H), 4.10-4.15 (m, 2 H), 4.27-4.32
(m, 2 H), 5.10-5.12 (m, 2 H), 6.65 (d, J = 6.0 Hz,
2 H), 7.04 (s, 4 H), 7.27-7.45 (m, 6 H), 7.65 (d, J = 7.5 Hz,
2 H). ¹³C NMR (75 MHz, CDCl3): δ = 14.0,
21.0, 46.2, 61.5, 68.7, 76.3, 127.3, 128.0, 128.2, 128.3, 128.6,
128.9, 129.3, 130.9, 134.0, 135.4, 137.4, 138.7, 169.9, 172.6. IR: 1736,
1732, 1619, 1552, 1516, 1446, 1379, 1317, 1288, 1182, 1026, 695
cm-¹. MS (70 eV, EI): m/z (%) = 430
(4) [M+], 413 (3), 357 (7),
310 (17), 267 (27), 266 (100), 238 (22), 193 (69), 165 (61). Anal.
Calcd (%) for C26H26N2O4:
C, 72.54; H, 6.09; N, 6.51. Found: C, 72.36; H, 6.22; N, 6.35.