Ultraschall Med 2010; 31(1): 53-62
DOI: 10.1055/s-0028-1109482
Original Article

© Georg Thieme Verlag KG Stuttgart · New York

Low-Frequency Ultrasound Permeates the Human Thorax and Lung: a Novel Approach to Non-Invasive Monitoring

Ultraschall bei niedrigeren Frequenzen durchdringt den menschlichen Thorax: eine neue Methode für die LungendiagnostikD. Rueter1 , H.-P. Hauber2 , D. Droeman2 , P. Zabel2 , S. Uhlig1
  • 1Institute of Pharmacology and Toxicology, RWTH Aachen
  • 2Clinical Medicine, FZ Borstel
Further Information

Publication History

received: 18.10.2008

accepted: 15.4.2009

Publication Date:
06 July 2009 (online)

Zusammenfassung

Ziel: Herkömmliche Sonografie bei 2 – 10 MHz kann den Thorax wegen der Lufteinschlüsse kaum durchdringen. Deshalb gilt Ultraschall als unbrauchbar für Thoraxuntersuchungen. Allerdings sind bisher noch keine systematischen Untersuchungen bei Frequenzen < 1 MHz an Lungen in situ durchgeführt worden. Zudem arbeitet die gängige Ultraschalltechnik im Echomodus und nicht als Thoraxdurchstrahlung. Material und Methoden: Menschliche Individuen wurden untersucht mit einfachen Sender-Empfänger-Anordnungen oder einem elastischen Thoraxgürtel mit 12 Sensoren und einem auf dem Sternum fixierten Sender. Dabei konzentrierten wir uns auf Schall zwischen 1 kHz und 1 MHz. Ergebnisse: Die Schalltransmission durch Thorax und Lunge in situ im Frequenzbereich von 1 Hz bis 1 MHz zeigt 3 physikalisch verschiedene Frequenzbereiche: < 1 kHz existiert eine Schallausbreitung mit 30 – 50 m/s; > 1 kHz scheint keine effektive Schallausbreitung möglich, bis oberhalb von etwa 10 kHz abrupt eine vergleichsweise schnelle Schallausbreitung mit etwa 1500 m/s einsetzt. Wir zeigen, dass Ultraschall zwischen 10 kHz und 1 MHz den menschlichen Thorax durchdringt und dabei empfindlich auf den Luft- bzw. Wassergehalt der Lungen reagiert. Bei 10 – 15 kHz erreichte der Signalkontrast zwischen Inspiration und Exspiration mehrere Größenordnungen. Die Schalldurchdringung bei Patienten mit Lungenemphysem oder Pneumothorax war erniedrigt, bei Pleuraerguss hingegen erhöht. Schlussfolgerung: Die Schallleitung in der Lunge ist durch drei Frequenzbänder charakterisiert. Niedrigfrequenter Ultraschall durchdringt den Thorax und ist möglicherweise geeignet für die Lungendiagnostik.

Abstract

Purpose: Conventional sonography at 2 – 10 MHz cannot permeate the chest because ultrasound at this frequency is strongly scattered and reflected by air inclusions in the lungs. Therefore, sonography is considered impracticable for thoracic imaging. However, human thoraxes and lungs in situ were never rigorously probed with ultrasound at frequencies below 1 MHz. In addition, ultrasound is commonly applied as echo imaging rather than sound transmission. Materials and Methods: Human subjects were studied with a transducer detector pair or an elastic thorax belt equipped with 12 sensors 5 cm apart that was wrapped around the thorax and a single pulse transmitter attached to the sternum. We focused on fast ultrasound transmission from 1 kHz to 1 MHz, coupled over thoracic sonotrodes. Results: Between 1 Hz to 1 MHz, sound transmission through thorax and lungs shows three distinct bands: < 1 kHz sound is transmitted at 30 – 50 m/sec, between 1 – 10 kHz sound transmission is absent and > 10 kHz sound is transmitted with a speed of 1500 m/sec. We demonstrate that low-frequency ultrasound (10 – 750 kHz) can permeate the thorax and permits monitoring of the air and water content of human lungs. In healthy subjects at 15 kHz, the difference in sound transmission through thorax and lungs between inspiration and expiration was dynamic and spanned several decades. Sound transmission during expiration was strongly decreased in patients suffering from pulmonary emphysema or pneumothorax, but increased in patients with pleural effusions. Conclusion: Sound transmission in the lungs is characterized by three distinct frequency bands. Low frequency ultrasound is transmitted through the lungs and may offer a novel non-invasive approach to real time diagnostics.

References

  • 1 Sistrom C L, Wallace K K, Gay S B. Thoracic sonography for diagnosis and intervention.  Curr Probl Diagn Radiol. 1997;  26 1-49
  • 2 Barbry T, Bouhemad B, Leleu K. et al . Transthoracic ultrasound approach of thoracic aorta in critically ill patients with lung consolidation.  J Crit Care. 2006;  21 203-208
  • 3 Mikhak Z, Pedersen P C. Acoustic attenuation properties of the lung: an open question.  Ultrasound Med Biol. 2002;  28 1209-1216
  • 4 Pedersen P C, Ozcan H S. Ultrasound properties of lung tissue and their measurements.  Ultrasound Med Biol. 1986;  12 483-499
  • 5 Dunn F. Attenuation and speed of ultrasound in lung: dependence upon frequency and inflation.  J Acoust Soc Am. 1986;  80 1248-1250
  • 6 Fredberg J J, Hoenig H. Mechanical response of the lungs at high frequencies for healthy nonsmoking adults.  J Biomech Eng. 1978;  100 57-66
  • 7 Kraman S S. Speed of low-frequency sound through lungs of normal men.  J Appl Physiol. 1983;  55 1862-1867
  • 8 Rice D A. Sound speed in pulmonary parenchyma.  J Appl Physiol. 1983;  54 304-308
  • 9 Wodicka G R, Stevens K N, Golub H L. et al . A model of acoustic transmission in the respiratory system.  IEEE Trans Biomed Eng. 1989;  36 925-934
  • 10 Pasterkamp H, Kraman S S, Wodicka G R. Respiratory sounds. Advances beyond the stethoscope.  Am J Respir Crit Care Med. 1997;  156 974-987
  • 11 Berger P J, Skuza E M, Ramsden C A. et al . Velocity and attenuation of sound in the isolated fetal lung as it is expanded with air.  J Appl Physiol. 2005;  98 2235-2241
  • 12 Arnd F, Voegeli F. Apparatus and method for producing respiration-related data. DOI: US2006206035; WO 02/22017 A1
  • 13 Goncharoff V, Jacobs J E, Cugell D W. Wideband acoustic transmission of human lungs.  Med Biol Eng Comput. 1989;  27 513-519
  • 14 Rasanen J, Gavriely N. Response of acoustic transmission to positive airway pressure therapy in experimental lung injury.  Intensive Care Med. 2005;  31 1434-1441
  • 15 Bushong S C, Archer B R. Diagnostic Ultrasound: Physics, Biology, and Instrumentation. 1991
  • 16 Boyd E. Growth, Including Reproduction and Morphological Development. in: Altmann D (Ed.), Biological Handbooks. 1st ed., Am Soc. für Exp. Biol., Washington DC,. 1962: 346
  • 17 Forsberg S A. Pulmonary blood volume in man. A study using the double indicator technique in patients with vascular disease.  Acta Med Scand. 1964;  Suppl 410 1-75
  • 18 Lewis M L, Gnoj J, Fisher V J. et al . Determinants of pulmonary blood volume.  J Clin Invest. 1970;  49 170-182
  • 19 Joachim H, Riede U N, Mittermayer C. The weight of human lungs as a diagnostic criterium (distinction of normal lungs from shock lungs by histologic, morphometric and biochemical investigations).  Pathol Res Pract. 1978;  162 24-40
  • 20 Bedell G N, Eggers R L. Pulmonary capillary blood volume and diffusing capacity of the pulmonary membrane: findings in men with emphysema contrasted with those in men with fibrosis.  J Clin Invest. 1964;  43 1245
  • 21 Morrison N J, Abboud R T, Muller N L. et al . Pulmonary capillary blood volume in emphysema.  Am Rev Respir Dis. 1990;  141 53-61
  • 22 Jorgensen K, Muller M F, Nel J. et al . Reduced intrathoracic blood volume and left and right ventricular dimensions in patients with severe emphysema: an MRI study.  Chest. 2007;  131 1050-1057

Prof. Stefan Uhlig

Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University

Wendlingweg 2

52074 Aachen

Phone: ++ 49/2 41/8 01 91 20

Fax: ++ 49/2 41/80 8 24 33

Email: suhlig@ukaachen.de

    >