References and Notes
<A NAME="RG01209ST-1">1</A>
Wijsmuller WFA.
Wanner MJ.
Koomen G.-J.
Pandit UK.
Heterocycles
1986,
24:
1795
<A NAME="RG01209ST-2A">2a</A>
Bell MR.
D’Ambra TE.
Kumar V.
Eissenstat
MA.
Herrmann JL.
Wetzel JR.
Rosi D.
Philion RE.
Daum SJ.
Hlasta DJ.
Kullnig RK.
Ackerman JH.
Haubrich DR.
Luttinger DA.
Baizman ER.
Miller MS.
Ward SJ.
J.
Med. Chem.
1991,
34:
1099
<A NAME="RG01209ST-2B">2b</A>
D’Ambra TE.
Estep KG.
Bell MR.
Eissenstat
MA.
Josef KA.
Ward SJ.
Haycock DA.
Baizman ER.
Casiano FM.
Beglin NC.
Chippari SM.
Grego JD.
Kullnig RK.
Daley GT.
J. Med. Chem.
1992,
35:
124
<A NAME="RG01209ST-2C">2c</A>
Sheppard GS.
Pireh D.
Carrera GM.
Bures MG.
Heyman HR.
Steinman DH.
Davidsen SK.
Phillips JG.
Guinn DE.
May PD.
Conway RD.
Rhein DA.
Calhoun WC.
Albert DH.
Magoc TJ.
Carter GW.
Summers JB.
J. Med. Chem.
1994,
37:
2011
<A NAME="RG01209ST-2D">2d</A>
Lehr M.
J.
Med. Chem.
1997,
40:
2694
<A NAME="RG01209ST-2E">2e</A>
Curtin ML.
Davidsen SK.
Heyman HR.
Garland RB.
Sheppard GS.
Florjancic AS.
Xu L.
Carrera
GM.
Steinman DH.
Trautmann JA.
Albert DH.
Magoc TJ.
Tapang P.
Rhein DA.
Conway RG.
Luo G.
Denissen JF.
Marsh KC.
Morgan DW.
Summers JB.
J.
Med. Chem.
1998,
41:
74
For the acylation of N-protected
indoles, see:
<A NAME="RG01209ST-3A">3a</A>
Ketcha
DM.
Gribble GW.
J.
Org. Chem.
1985,
50:
5451
For the acylation of NH free indoles, see:
<A NAME="RG01209ST-3B">3b</A>
Ottoni O.
Neder A.
Dias AKD.
Cruz RPA.
Equino LB.
Org. Lett.
2001,
7:
1005
For the preparation of 3-acylindoles via the Vilsmeier-Haack
reaction, see:
<A NAME="RG01209ST-3C">3c</A>
Sundberg RJ.
The Chemistry of Indoles
Academic
Press;
New York:
1970.
For the acylation of indole Grignard reagents, see:
<A NAME="RG01209ST-3D">3d</A>
Heacock RA.
Kasparek S.
Adv. Heterocycl.
Chem.
1969,
10:
61
see ref. 3c. For the acylation of 3-indolylzinc chlorides,
see:
<A NAME="RG01209ST-3E">3e</A>
Bergman J.
Venemalm L.
Tetrahedron
1990,
46:
6061
<A NAME="RG01209ST-3F">3f</A>
Faul MM.
Winneroski LL.
Tetrahedron
Lett.
1997,
38:
4749
For other procedures, see:
<A NAME="RG01209ST-3G">3g</A>
Bergman J.
Bäckvall JE.
Lindströn JO.
Tetrahedron
1973,
29:
971
<A NAME="RG01209ST-3H">3h</A>
Eyley SC.
Giles RG.
Heaney H.
Tetrahedron Lett.
1985,
26:
4649
<A NAME="RG01209ST-3I">3i</A>
Pindur U.
Flo C.
Akgun E.
Tunali M.
Liebigs Ann. Chem.
1986,
9:
1621
<A NAME="RG01209ST-3J">3j</A>
Pfeuffer L.
Sody E.
Pindur U.
Chem.-Ztg.
1987,
111:
84
<A NAME="RG01209ST-4A">4a</A>
Sakamoto T.
Nagano T.
Kondo Y.
Yamanaka H.
Synthesis
1990,
215
<A NAME="RG01209ST-4B">4b</A>
Arcadi A.
Cacchi S.
Carnicellli V.
Marinelli F.
Tetrahedron
1994,
50:
437
<A NAME="RG01209ST-5">5</A>
Osuka A.
Mori Y.
Suzuki H.
Chem.
Lett.
1982,
2031
For recent reviews, see:
<A NAME="RG01209ST-6A">6a</A>
Ley SV.
Thomas AW.
Angew. Chem.
2003,
115:
5558
<A NAME="RG01209ST-6B">6b</A>
Evano G.
Blanchard N.
Toumi M.
Chem.
Rev.
2008,
108:
3054
<A NAME="RG01209ST-6C">6c</A>
Deutsch C.
Krause N.
Lipshutz BH.
Chem.
Rev.
2008,
108:
2916
<A NAME="RG01209ST-6D">6d</A>
Reymond S.
Cossy J.
Chem. Rev.
2008,
108:
5359
<A NAME="RG01209ST-6E">6e</A>
Alexakis A.
Backvall JE.
Krause N.
Pamies O.
Dieguez M.
Chem.
Rev.
2008,
108:
2796
<A NAME="RG01209ST-6F">6f</A>
Yamada
K.-i.
Tomioka K.
Chem. Rev.
2008,
108:
2874
<A NAME="RG01209ST-6G">6g</A>
Stanley LM.
Sibi MP.
Chem.
Rev.
2008,
108:
2887
<A NAME="RG01209ST-6H">6h</A>
Shibasaki M.
Kanai M.
Chem. Rev.
2008,
108:
2853
<A NAME="RG01209ST-6I">6i</A>
Carril M.
SanMartin R.
Dominguez E.
Chem.
Soc. Rev.
2008,
37:
639
<A NAME="RG01209ST-7">7</A>
Cacchi S.
Fab rizi G.
Chem. Rev.
2005,
105:
2873
<A NAME="RG01209ST-8">8</A>
Cacchi S.
Fabrizi G.
Parisi LM.
Org.
Lett.
2003,
5:
3843
<A NAME="RG01209ST-9A">9a</A>
Cacchi S.
Fabrizi G.
Filisti E.
Org. Lett.
2008,
10:
2629
<A NAME="RG01209ST-9B">9b</A>
Bernini R.
Cacchi S.
Fabrizi G.
Sferrazza A.
Synthesis
2009,
1209
<A NAME="RG01209ST-10">10</A>
Karpov AS.
Müller TJ.
Org. Lett.
2003,
5:
3451
<A NAME="RG01209ST-11">11</A>
Typical Procedure
for the Cyclization of
N
-(2-Iodoaryl)-enaminones 1 to 3-Acylindoles
2
To a stirred solution of 1d (118.2
mg, 0.25 mmol) in DMF (2.5 mL), CuI (2.4 mg, 0.0125 mmol), 1,10-phenanthroline (2.3
mg, 0.0125 mmol), and K2CO3 (69.0 mg, 0.50
mmol) were added at r.t. The reaction mixture was warmed at 100 ˚C
and stirred for 10 h. After cooling, the reaction mixture was diluted
with Et2O, washed with 1 N HCl and brine, dried over
Na2SO4, and concentrated under reduced pressure.
The residue was purified by chromatography on SiO2 [n-hexane-EtOAc, 70:30] to
afford 82.8 mg (96% yield) of 2d:
white solid; mp 184-185 ˚C. IR (KBr):
3423, 2927, 1601, 1562, 1435, 1223 cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 12.22
(br s, 1 H), 7.84 (d, J = 7.9
Hz, 1 H), 7.60-7.57 (m, 2 H), 7.52 (d, J = 7.9
Hz, 1 H), 7.27 (t, J = 7.9 Hz,
1 H), 7.18 (t, J = 7.8
Hz, 2 H), 7.04-6.92 (m, 4 H), 6.85 (d, J = 7.6
Hz, 1 H), 3.67 (s, 1 H). ¹³C NMR (100.6
MHz, DMSO-d
6): δ = 191.2,
164.3 (d, J
CF = 251
Hz), 159.3, 144.4, 137.1 (d, J
CF = 22
Hz), 136.3, 133.2, 132.2 (d, J
CF = 9
Hz), 129.7, 128.7, 123.5, 122.5, 122.0, 121.1, 115.4, 115.3, 115.1 (d, J
CF = 4
Hz), 112.6, 112.4, 55.6. ¹9F NMR (376 MHz, DMSO-d
6): δ = -108.6.
Anal. Calcd for C22H16FNO2: C, 76.51;
H, 4.67. Found: C, 76.40; H, 4.58.
<A NAME="RG01209ST-12">12</A>
Compounds 2a and 3 were isolated in 30% and 60% yield, respectively,
when the reaction was carried out in DMA at 120 ˚C
(3 h).
<A NAME="RG01209ST-13">13</A>
Typical Procedure
for the Preparation of 3-Acylindoles 2 Omitting the Isolation of
Enaminone Intermediates
To a stirred solution of 2-iodoaniline (109.5 mg, 0.5 mmol) in MeOH (1.0 mL),
1,3-diphenylprop-2-yn-1-one (154.5 mg, 0.75 mmol) was added at r.t.
The reaction mixture was warmed at 120 ˚C and
stirred for 48 h. After that period the volatile materials were
evaporated at reduced pressure, and CuI (4.8 mg, 0.025 mmol), 1,10-phenanthroline
(4.5 mg, 0.025 mmol), K2CO3 (138.0 mg, 1.0
mmol), and DMF (4 mL) were added. The reaction mixture was warmed
at 100 ˚C and stirred for 2.5 h. After cooling,
the reaction mixture was diluted with Et2O, washed with1
N HCl and brine, dried over Na2SO4, and concentrated
under reduced pressure. The residue was purified by chromatography
on SiO2 [n-hexane-EtOAc,
75:25] to afford 106 mg (76% yield) of 2a: white solid; mp 223-224 ˚C.
IR (KBr): 3055, 1593, 1564, 1450, 1421 cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 12.19
(br s, 1 H), 7.75 (d, J = 7.9
Hz, 1 H), 7.54-7.51 (m, 3 H), 7.40-7.35 (m, 3
H), 7.26-7.10 (m, 7 H). ¹³C
NMR (100.6 MHz, DMSO-d
6): δ = 192.6,
144.6, 140.3, 136.3, 132.1, 131.8, 130.1, 129.6, 129.0, 128.7, 128.5,
128.3, 123.4, 121.9, 121.1, 112.7, 112.4. Anal. Calcd for C21H15NO:
C, 84.82; H, 5.08. Found: C, 84.71; H, 5.19.
<A NAME="RG01209ST-14">14</A>
Ge H.
Niphakis MJ.
Georg GI.
J.
Am. Chem. Soc.
2008,
130:
3708
<A NAME="RG01209ST-15A">15a</A>
Evindar G.
Batey RA.
Org.
Lett.
2003,
5:
133
<A NAME="RG01209ST-15B">15b</A>
Evindar G.
Batey RA.
J. Org. Chem.
2006,
71:
1802
For some recent leading references
on the copper-catalyzed construction of the indole ring, see:
<A NAME="RG01209ST-16A">16a</A>
Cacchi S.
Fabrizi G.
Parisi LM.
Org.
Lett.
2003,
5:
3843
<A NAME="RG01209ST-16B">16b</A>
Lu B.
Ma D.
Org. Lett.
2006,
8:
6115
<A NAME="RG01209ST-16C">16c</A>
Yuen J.
Fang Y.-Q.
Lautens M.
Org.
Lett.
2006,
8:
653
<A NAME="RG01209ST-16D">16d</A>
Chen Y.
Xie X.
Ma D.
J.
Org. Chem.
2007,
72:
9329
<A NAME="RG01209ST-16E">16e</A>
Tanimori S.
Ura H.
Kirihata M.
Eur.
J. Org. Chem.
2007,
3977
<A NAME="RG01209ST-16F">16f</A>
Hiroaki O.
Yusuke O.
Shinya O.
Nobutaka F.
Angew. Chem. Int. Ed.
2007,
46:
2295
<A NAME="RG01209ST-16G">16g</A>
Chen Y.
Wang Y.
Sun Z.
Ma D.
Org. Lett.
2008,
10:
625
For some recent leading references
on the copper-catalyzed functionalization of indole rings, see:
<A NAME="RG01209ST-17A">17a</A>
Coste A.
Toumi M.
Wright K.
Razafimahaléo V.
Couty F.
Marrot J.
Evano G.
Org. Lett.
2008,
10:
3841
<A NAME="RG01209ST-17B">17b</A>
Toumi M.
Couty F.
Marrot J.
Evano G.
Org. Lett.
2008,
10:
5027