References and Notes
Reviews:
<A NAME="RW02909ST-1A">1a</A>
Montgomery J.
Angew.
Chem. Int. Ed.
2004,
43:
3890
<A NAME="RW02909ST-1B">1b</A>
Moslin RM.
Miller-Moslin K.
Jamison
TF.
Chem. Commun.
2007,
4441
<A NAME="RW02909ST-1C">1c</A>
Michelet V.
Toullec PY.
Genêt J.-P.
Angew. Chem. Int. Ed.
2008,
47:
4268
<A NAME="RW02909ST-1D">1d</A> A special issue on nickel
catalysis:
Jamison TF.
Tetrahedron
2006,
62:
7499
<A NAME="RW02909ST-1E">1e</A>
Wang C.
Xi Z.
Chem. Soc. Rev.
2007,
36:
1395
For recent examples, see:
<A NAME="RW02909ST-2A">2a</A>
Maeda K.
Saito S.
Tetrahedron Lett.
2007,
48:
3173
<A NAME="RW02909ST-2B">2b</A>
Komagawa S.
Saito S.
Angew. Chem. Int. Ed.
2006,
45:
2446
<A NAME="RW02909ST-2C">2c</A>
Tekavec TN.
Louie J.
J. Org. Chem.
2008,
73:
2641
<A NAME="RW02909ST-2D">2d</A>
Tekavec
TN.
Louie J.
Tetrahedron
2008,
64:
6870
<A NAME="RW02909ST-2E">2e</A>
Duong HA.
Louie J.
Tetrahedron
2006,
62:
7552
<A NAME="RW02909ST-2F">2f</A>
Tekavec TN.
Zuo G.
Simon K.
Louie J.
J. Org. Chem.
2006,
71:
5834
<A NAME="RW02909ST-2G">2g</A>
Duong HA.
Louie J.
J. Organomet.
Chem.
2005,
690:
5098
<A NAME="RW02909ST-2H">2h</A>
Tekevac TN.
Louie J.
Org. Lett.
2005,
7:
4037
<A NAME="RW02909ST-2I">2i</A>
McCormick MM.
Duong HA.
Zuo G.
Louie J.
J. Am. Chem.
Soc.
2005,
127:
5030
<A NAME="RW02909ST-2J">2j</A>
Duong HA.
Cross MJ.
Louie J.
J. Am. Chem. Soc.
2004,
126:
11438
<A NAME="RW02909ST-2K">2k</A>
Ikeda S.
Daimon N.
Sanuki R.
Odashima K.
Chem. Eur. J.
2006,
12:
1797
<A NAME="RW02909ST-2L">2l</A>
Ikeda S.
Obara H.
Tsuchida E.
Shirai N.
Odashima K.
Organometallics
2008,
27:
1645
<A NAME="RW02909ST-2M">2m</A>
Ashida S.
Murakami M.
Bull. Chem. Soc. Jpn.
2008,
81:
885
<A NAME="RW02909ST-3A">3a</A>
Herath A.
Thompson BB.
Montgomery J.
J. Am. Chem. Soc.
2007,
129:
8712
<A NAME="RW02909ST-3B">3b</A>
Herath A.
Montgomery J.
J. Am. Chem. Soc.
2006,
128:
14030
<A NAME="RW02909ST-3C">3c</A>
Jayanth TT.
Cheng C.-H.
Angew.
Chem. Int. Ed.
2007,
46:
5921
<A NAME="RW02909ST-3D">3d</A>
Ogoshi S.
Ikeda H.
Kurosawa H.
Angew.
Chem. Int. Ed.
2007,
46:
4930
<A NAME="RW02909ST-3E">3e</A>
Patel SJ.
Jamison TF.
Angew. Chem.
Int. Ed.
2003,
42:
1364
<A NAME="RW02909ST-4">4</A>
Dialkylzinc reagents, zinc powder,
triethylsilane, triethylboranes, and DIBAL-H have been used as the reducing
agent in this type of transformation.
For recent examples, see:
<A NAME="RW02909ST-5A">5a</A>
Kimura M.
Ezoe A.
Mori M.
Iwata K.
Tamura Y.
J. Am. Chem.
Soc.
2005,
127:
201
<A NAME="RW02909ST-5B">5b</A>
Kimura M.
Ezoe A.
Mori M.
Iwata K.
Tamura Y.
J. Am. Chem.
Soc.
2006,
128:
8559
<A NAME="RW02909ST-5C">5c</A>
Yang Y.
Zhu S.-F.
Duan H.-F.
Zhou C.-Y.
Wang L.-X.
Zhou Q.-L.
J. Am. Chem. Soc.
2007,
129:
2248
<A NAME="RW02909ST-5D">5d</A> For a review, see:
Ikeda S.
Angew. Chem. Int. Ed.
2003,
42:
5120
<A NAME="RW02909ST-6A">6a</A>
Joensuu PM.
Murray GJ.
Fordyce EAF.
Luebbers T.
Lam HW.
J.
Am. Chem. Soc.
2008,
130:
7328
<A NAME="RW02909ST-6B">6b</A>
Villanueva MI.
Rupnicki L.
Lam HW.
Tetrahedron
2008,
64:
7896
<A NAME="RW02909ST-6C">6c</A>
Lam HW.
Joensuu
PM.
Murray GJ.
Fordyce EAF.
Prieto O.
Luebbers T.
Org.
Lett.
2006,
8:
3729
<A NAME="RW02909ST-6D">6d</A>
Lam HW.
Murray GJ.
Firth JD.
Org. Lett.
2005,
7:
5743
<A NAME="RW02909ST-7">7</A>
Chen M.
Weng Y.
Guo M.
Zhang H.
Lei A.
Angew. Chem. Int. Ed.
2008,
47:
2279
<A NAME="RW02909ST-8">8</A>
Zhao Z.
Ding Y.
Zhao G.
J. Org. Chem.
1998,
63:
9285
<A NAME="RW02909ST-9">9</A>
For examples of Ni-catalyzed reductive
cyclization pro-cesses with the methyl shift involving Me2Zn,
see ref. 5a and references cited therein.
For a example of Rh-catalyzed homodimerization
of 1,6-enynes, see:
<A NAME="RW02909ST-10A">10a</A>
Evans PA.
Robinson JE.
Baum EW.
Fazal AN.
J.
Am. Chem. Soc.
2002,
124:
8782
For similar reactions of dieneynes catalyzed by Rh, see:
<A NAME="RW02909ST-10B">10b</A>
DeBoef B.
Gilbertson SR.
J. Am. Chem. Soc.
2002,
124:
8784
<A NAME="RW02909ST-10C">10c</A>
DeBoef B.
Counts WR.
Gilbertson SR.
J. Org. Chem.
2007,
72:
799
For examples of nickel metallocyclopentadienes in the homodimerization
of 1,3-perfluoroalkylenynes, see:
<A NAME="RW02909ST-10D">10d</A>
Saito S.
Tanaka T.
Koizumi T.
Tsuboya N.
Itagaki H.
Kawasaki T.
Endo S.
Yamamoto Y.
J. Am. Chem. Soc.
2000,
122:
1810
<A NAME="RW02909ST-10E">10e</A>
Saito S.
Kawasaki T.
Tsuboya N.
Yamamoto Y.
J. Org. Chem.
2001,
66:
796
<A NAME="RW02909ST-11">11</A>
Wender PA.
Christy JP.
J. Am. Chem. Soc.
2007,
129:
13402
The combined use of 6 mol% of
Cy3P and 5 mol% of Ni(acac)2 only
led to a ratio of 1.5:1 favoring the [2+2+2] product 3a. Attempts to interject the reaction
intermediate with a third alkyne (3 equiv) resulted in a complex
mixture (when ethyl 3-phenylpropiolate was used) or the recovery
of most of the starting 1,6-enyne 1a (when
phenylacetylene or 1-hexyne were used), however, similar strategy
was successful with Rh-catalyzed reactions of unactivated 1,6-enynes:
<A NAME="RW02909ST-12A">12a</A>
Baik M.-H.
Baum EW.
Burland MC.
Evans PA.
J.
Am. Chem. Soc.
2005,
127:
1602
<A NAME="RW02909ST-12B">12b</A>
Evans PA.
Lai KW.
Sawyer JR.
J. Am. Chem. Soc.
2005,
127:
12466
<A NAME="RW02909ST-12C">12c</A>
Evans PA.
Sawyer JR.
Lai KW.
Huffman JC.
Chem.
Commun.
2005,
63
<A NAME="RW02909ST-12D">12d</A>
Evans PA.
Baum
EW.
Fazal AN.
Pink M.
Chem.
Commun.
2005,
3971
<A NAME="RW02909ST-13">13</A>
CCDC 690610(3a)
contains the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data-request/cif.
See the Supporting Information for a figure of its X-ray structure.
<A NAME="RW02909ST-14">14</A>
The [2+2+2+2] process
has been found to be favored at a large loading amount of Ni catalyst
for the dimerization of terminal 1,6-diynes, see ref. 10.
<A NAME="RW02909ST-15">15</A>
When 50 mol% or 20 mol% of
Me2Zn were used, the reaction failed to proceed.
<A NAME="RW02909ST-16">16</A> For examples of similar phenomena:
Tamao K.
Kobayashi K.
Ito Y.
J. Am. Chem. Soc.
1988,
110:
1286 ; and ref. 7
<A NAME="RW02909ST-17">17</A>
CCDC 690609(2h)
contains the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data-request/cif.
See the Supporting Information for a figure of its X-ray structure.
For corresponding studies, see:
<A NAME="RW02909ST-18A">18a</A>
Didiuk MT.
Morken JP.
Hoveyda AH.
J. Am. Chem. Soc.
1995,
117:
7273
<A NAME="RW02909ST-18B">18b</A>
Morken JP.
Didiuk MT.
Hoveyda AH.
Tetrahedron Lett.
1996,
37:
3613
<A NAME="RW02909ST-18C">18c</A>
Nomura N.
RajanBabu TV.
Tetrahedron Lett.
1997,
38:
1713
<A NAME="RW02909ST-18D">18d</A>
Didiuk MT.
Morken JP.
Hoveyda AH.
Tetrahedron
1998,
54:
1117
<A NAME="RW02909ST-18E">18e</A>
Taniguchi T.
Ogasawara K.
Angew. Chem. Int. Ed.
1998,
37:
1136
<A NAME="RW02909ST-18F">18f</A>
Lautens M.
Ma S.
Rovis T.
J.
Am. Chem. Soc.
1995,
117:
532 ;
and ref. 5a
<A NAME="RW02909ST-19">19</A>
In ref. 7, the authors also proposed
that oligomerization may be the possible reason for the decreased
yield with 1j.
For selected examples for the reductive
cyclization of unactivated 1,6-enynes using Rh and Ti catalysts,
see:
<A NAME="RW02909ST-20A">20a</A>
Jang H.-Y.
Hughes FW.
Gong H.
Zhang J.
Brodbelt JS.
Krische MJ.
J. Am. Chem. Soc.
2005,
127:
6174
<A NAME="RW02909ST-20B">20b</A>
Jang H.-Y.
Krische MJ.
J. Am. Chem. Soc.
2004,
126:
7875
<A NAME="RW02909ST-20C">20c</A>
Montchamp J.-L.
Negishi E.
J. Am. Chem. Soc.
1998,
120:
5345
<A NAME="RW02909ST-21">21</A>
The addition of 5 mol% of
Ph3P, PCy3 or (R)-BINAP
did not improve the product selectivity significantly.
<A NAME="RW02909ST-22">22</A>
Typical Procedure
for the Dimerization of 1 with Ni
II
/Me
2
Zn Combination
Under an atmosphere
of argon, 3.2 mg (0.012 mmol) of Ni(acac)2 were added
to a Schlenk tube, and the system was purged with argon three times.
Then enyne 1a (86 mg, 0.3 mmol) in 3.0
mL of freshly distilled THF was added via a syringe followed by
the addition of Me2Zn 0.3 mmol (1.2 M in toluene) in
one portion [in the case of NiCl2(PCy3),
Me2Zn was added at reflux]. The reaction mixture
was stirred for 1 h at r.t. before being quenched with sat. aq NH4Cl
soln. Then, the mixture was extracted with CH2Cl2 (3 × 3
mL), dried with anhyd Na2SO4. After removal
of the solvent in vacuum, the residue was purified by column chromatography
(silica gel, PE-Et2O = 4:1)
to provide the desired products 2a and 3a.
(5
E
,10
E
)-Tetramethyl-5,10-diphenyl-3a,4,8a,9-tetrahydropyrene-2,2,7,7(1
H
,3
H
,6
H
,8
H
)-tetracarboxy-late (2a)
Colorless crystal; mp 193-194 ˚C
(hexane-Et2O). ¹H NMR (300
MHz, CDCl3): δ = 7.36-7.17
(m, 10 H), 3.67 (s, 6 H), 3.63 (s, 6 H), 3.05-2.70 (m,
10 H), 2.24 (d, J = 10.6
Hz, 2 H), 1.95-1.89 (dd, J = 13.1,
6.8 Hz, 2 H) ppm. ¹³C NMR (75 MHz,
CDCl3): δ = 172.0, 171.7, 145.2, 144.2,
136.1, 128.3, 127.7, 126.3, 59.4, 52.60, 52.59, 46.2, 43.9, 43.0,
40.4 ppm. IR (KBr): 2952, 1734, 1434, 1250, 1205, 1070, 703 cm-¹. MS
(EI): m/z = 572 [M+],
167(base). HRMS (EI): m/z calcd for
C34H36O8: 572.2410; found: 572.2413.
Dimethyl 6-[2,2-Bis(methoxycarbonyl)pent-4-enyl]-5,7-diphenyl-3a,4-dihydro-1
H
-indene-2,2(3
H
)-dicarboxy-late
(3a)
Colorless crystal;¹³ mp
87-89 ˚C (hexane-Et2O). ¹H
NMR (300 MHz, CDCl3): δ = 7.39-7.18
(m, 10 H), 4.86-4.74 (m, 1 H), 4.58-4.68 (m, 2
H), 3.77 (s, 3 H), 3.64 (s, 3 H), 3.46 (s, 3 H), 3.36 (s, 3 H),
3.32-3.22 (m, 1 H), 2.97-2.57 (m, 5 H), 2.28 (d, J = 6.9 Hz,
2 H), 2.14 (t, J = 17.4
Hz, 1 H), 2.02-1.95 (dd, J = 13.2,
8.8 Hz, 2 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 172.2,
171.9, 171.1, 142.1, 141.4, 139.2, 133.7, 133.1, 130.1, 129.8, 129.6,
128.4, 128.0, 127.8, 127.0, 126.6, 117.7, 60.2, 59.0, 52.9, 52.7,
52.0, 39.6, 39.1, 38.5, 38.4, 37.8, 30.5 ppm. IR (KBr): 2953, 1732,
1491, 1435, 1380, 763, 735, 703 cm-¹.
MS (EI): m/z = 572 [M+], 279(base).
HRMS (EI): m/z calcd for C34H36O8Na+: 595.2316 ± 0.002;
found: 595.2302.