RSS-Feed abonnieren
DOI: 10.1055/s-0029-1217368
Ni-Catalyzed Carbocyclization of 1,6-Enynes Mediated by Dialkylzinc Reagents: Me2Zn or Et2Zn Makes a Difference
Publikationsverlauf
Publikationsdatum:
12. Juni 2009 (online)

Abstract
Unactivated 1,6-enynes were firstly found to undergo different cyclization process under the catalysis of Ni0 species in situ generated from NiII complexes and dialkylzinc reagents. When stoichiometric Me2Zn was used as the reducing agent, only the dimerization products {[2+2+2+2] or [2+2+2]} were obtained. On the other hand, reductive cyclization products were obtained solely when 0.6 equivalents of Et2Zn were employed as the reductant under otherwise the same reaction conditions. In the former case, up to 1:7 selectivity in favor of the [2+2+2] products was also achieved with NiCl2(PPh3)2/Me2Zn.
Key words
organozinc reagents - enynes - cyclizations - nickel
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- Reviews:
- 1a
Montgomery J. Angew. Chem. Int. Ed. 2004, 43: 3890Reference Ris Wihthout Link - 1b
Moslin RM.Miller-Moslin K.Jamison TF. Chem. Commun. 2007, 4441Reference Ris Wihthout Link - 1c
Michelet V.Toullec PY.Genêt J.-P. Angew. Chem. Int. Ed. 2008, 47: 4268Reference Ris Wihthout Link - 1d A special issue on nickel
catalysis:
Jamison TF. Tetrahedron 2006, 62: 7499Reference Ris Wihthout Link - 1e
Wang C.Xi Z. Chem. Soc. Rev. 2007, 36: 1395Reference Ris Wihthout Link - For recent examples, see:
- 2a
Maeda K.Saito S. Tetrahedron Lett. 2007, 48: 3173Reference Ris Wihthout Link - 2b
Komagawa S.Saito S. Angew. Chem. Int. Ed. 2006, 45: 2446Reference Ris Wihthout Link - 2c
Tekavec TN.Louie J. J. Org. Chem. 2008, 73: 2641Reference Ris Wihthout Link - 2d
Tekavec TN.Louie J. Tetrahedron 2008, 64: 6870Reference Ris Wihthout Link - 2e
Duong HA.Louie J. Tetrahedron 2006, 62: 7552Reference Ris Wihthout Link - 2f
Tekavec TN.Zuo G.Simon K.Louie J. J. Org. Chem. 2006, 71: 5834Reference Ris Wihthout Link - 2g
Duong HA.Louie J. J. Organomet. Chem. 2005, 690: 5098Reference Ris Wihthout Link - 2h
Tekevac TN.Louie J. Org. Lett. 2005, 7: 4037Reference Ris Wihthout Link - 2i
McCormick MM.Duong HA.Zuo G.Louie J. J. Am. Chem. Soc. 2005, 127: 5030Reference Ris Wihthout Link - 2j
Duong HA.Cross MJ.Louie J. J. Am. Chem. Soc. 2004, 126: 11438Reference Ris Wihthout Link - 2k
Ikeda S.Daimon N.Sanuki R.Odashima K. Chem. Eur. J. 2006, 12: 1797Reference Ris Wihthout Link - 2l
Ikeda S.Obara H.Tsuchida E.Shirai N.Odashima K. Organometallics 2008, 27: 1645Reference Ris Wihthout Link - 2m
Ashida S.Murakami M. Bull. Chem. Soc. Jpn. 2008, 81: 885Reference Ris Wihthout Link - 3a
Herath A.Thompson BB.Montgomery J. J. Am. Chem. Soc. 2007, 129: 8712Reference Ris Wihthout Link - 3b
Herath A.Montgomery J. J. Am. Chem. Soc. 2006, 128: 14030Reference Ris Wihthout Link - 3c
Jayanth TT.Cheng C.-H. Angew. Chem. Int. Ed. 2007, 46: 5921Reference Ris Wihthout Link - 3d
Ogoshi S.Ikeda H.Kurosawa H. Angew. Chem. Int. Ed. 2007, 46: 4930Reference Ris Wihthout Link - 3e
Patel SJ.Jamison TF. Angew. Chem. Int. Ed. 2003, 42: 1364Reference Ris Wihthout Link - For recent examples, see:
- 5a
Kimura M.Ezoe A.Mori M.Iwata K.Tamura Y. J. Am. Chem. Soc. 2005, 127: 201Reference Ris Wihthout Link - 5b
Kimura M.Ezoe A.Mori M.Iwata K.Tamura Y. J. Am. Chem. Soc. 2006, 128: 8559Reference Ris Wihthout Link - 5c
Yang Y.Zhu S.-F.Duan H.-F.Zhou C.-Y.Wang L.-X.Zhou Q.-L.
J. Am. Chem. Soc. 2007, 129: 2248Reference Ris Wihthout Link - 5d For a review, see:
Ikeda S. Angew. Chem. Int. Ed. 2003, 42: 5120Reference Ris Wihthout Link - 6a
Joensuu PM.Murray GJ.Fordyce EAF.Luebbers T.Lam HW. J. Am. Chem. Soc. 2008, 130: 7328Reference Ris Wihthout Link - 6b
Villanueva MI.Rupnicki L.Lam HW. Tetrahedron 2008, 64: 7896Reference Ris Wihthout Link - 6c
Lam HW.Joensuu PM.Murray GJ.Fordyce EAF.Prieto O.Luebbers T. Org. Lett. 2006, 8: 3729Reference Ris Wihthout Link - 6d
Lam HW.Murray GJ.Firth JD. Org. Lett. 2005, 7: 5743Reference Ris Wihthout Link - 7
Chen M.Weng Y.Guo M.Zhang H.Lei A. Angew. Chem. Int. Ed. 2008, 47: 2279 - 8
Zhao Z.Ding Y.Zhao G. J. Org. Chem. 1998, 63: 9285 - For a example of Rh-catalyzed homodimerization of 1,6-enynes, see:
- 10a
Evans PA.Robinson JE.Baum EW.Fazal AN. J. Am. Chem. Soc. 2002, 124: 8782Reference Ris Wihthout Link - For similar reactions of dieneynes catalyzed by Rh, see:
- 10b
DeBoef B.Gilbertson SR. J. Am. Chem. Soc. 2002, 124: 8784Reference Ris Wihthout Link - 10c
DeBoef B.Counts WR.Gilbertson SR. J. Org. Chem. 2007, 72: 799Reference Ris Wihthout Link - For examples of nickel metallocyclopentadienes in the homodimerization of 1,3-perfluoroalkylenynes, see:
- 10d
Saito S.Tanaka T.Koizumi T.Tsuboya N.Itagaki H.Kawasaki T.Endo S.Yamamoto Y. J. Am. Chem. Soc. 2000, 122: 1810Reference Ris Wihthout Link - 10e
Saito S.Kawasaki T.Tsuboya N.Yamamoto Y. J. Org. Chem. 2001, 66: 796Reference Ris Wihthout Link - 11
Wender PA.Christy JP. J. Am. Chem. Soc. 2007, 129: 13402 - The combined use of 6 mol% of Cy3P and 5 mol% of Ni(acac)2 only led to a ratio of 1.5:1 favoring the [2+2+2] product 3a. Attempts to interject the reaction intermediate with a third alkyne (3 equiv) resulted in a complex mixture (when ethyl 3-phenylpropiolate was used) or the recovery of most of the starting 1,6-enyne 1a (when phenylacetylene or 1-hexyne were used), however, similar strategy was successful with Rh-catalyzed reactions of unactivated 1,6-enynes:
- 12a
Baik M.-H.Baum EW.Burland MC.Evans PA. J. Am. Chem. Soc. 2005, 127: 1602Reference Ris Wihthout Link - 12b
Evans PA.Lai KW.Sawyer JR. J. Am. Chem. Soc. 2005, 127: 12466Reference Ris Wihthout Link - 12c
Evans PA.Sawyer JR.Lai KW.Huffman JC. Chem. Commun. 2005, 63Reference Ris Wihthout Link - 12d
Evans PA.Baum EW.Fazal AN.Pink M. Chem. Commun. 2005, 3971Reference Ris Wihthout Link - 16 For examples of similar phenomena:
Tamao K.Kobayashi K.Ito Y. J. Am. Chem. Soc. 1988, 110: 1286 ; and ref. 7Reference Ris Wihthout Link - For corresponding studies, see:
- 18a
Didiuk MT.Morken JP.Hoveyda AH. J. Am. Chem. Soc. 1995, 117: 7273Reference Ris Wihthout Link - 18b
Morken JP.Didiuk MT.Hoveyda AH. Tetrahedron Lett. 1996, 37: 3613Reference Ris Wihthout Link - 18c
Nomura N.RajanBabu TV. Tetrahedron Lett. 1997, 38: 1713Reference Ris Wihthout Link - 18d
Didiuk MT.Morken JP.Hoveyda AH. Tetrahedron 1998, 54: 1117Reference Ris Wihthout Link - 18e
Taniguchi T.Ogasawara K. Angew. Chem. Int. Ed. 1998, 37: 1136Reference Ris Wihthout Link - 18f
Lautens M.Ma S.Rovis T. J. Am. Chem. Soc. 1995, 117: 532 ; and ref. 5aReference Ris Wihthout Link - For selected examples for the reductive cyclization of unactivated 1,6-enynes using Rh and Ti catalysts, see:
- 20a
Jang H.-Y.Hughes FW.Gong H.Zhang J.Brodbelt JS.Krische MJ. J. Am. Chem. Soc. 2005, 127: 6174Reference Ris Wihthout Link - 20b
Jang H.-Y.Krische MJ. J. Am. Chem. Soc. 2004, 126: 7875Reference Ris Wihthout Link - 20c
Montchamp J.-L.Negishi E. J. Am. Chem. Soc. 1998, 120: 5345Reference Ris Wihthout Link
References and Notes
Dialkylzinc reagents, zinc powder, triethylsilane, triethylboranes, and DIBAL-H have been used as the reducing agent in this type of transformation.
9For examples of Ni-catalyzed reductive cyclization pro-cesses with the methyl shift involving Me2Zn, see ref. 5a and references cited therein.
13CCDC 690610(3a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data-request/cif. See the Supporting Information for a figure of its X-ray structure.
14The [2+2+2+2] process has been found to be favored at a large loading amount of Ni catalyst for the dimerization of terminal 1,6-diynes, see ref. 10.
15When 50 mol% or 20 mol% of Me2Zn were used, the reaction failed to proceed.
17CCDC 690609(2h) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data-request/cif. See the Supporting Information for a figure of its X-ray structure.
19In ref. 7, the authors also proposed that oligomerization may be the possible reason for the decreased yield with 1j.
21The addition of 5 mol% of Ph3P, PCy3 or (R)-BINAP did not improve the product selectivity significantly.
22
Typical Procedure
for the Dimerization of 1 with Ni
II
/Me
2
Zn Combination
Under an atmosphere
of argon, 3.2 mg (0.012 mmol) of Ni(acac)2 were added
to a Schlenk tube, and the system was purged with argon three times.
Then enyne 1a (86 mg, 0.3 mmol) in 3.0
mL of freshly distilled THF was added via a syringe followed by
the addition of Me2Zn 0.3 mmol (1.2 M in toluene) in
one portion [in the case of NiCl2(PCy3),
Me2Zn was added at reflux]. The reaction mixture
was stirred for 1 h at r.t. before being quenched with sat. aq NH4Cl
soln. Then, the mixture was extracted with CH2Cl2 (3 × 3
mL), dried with anhyd Na2SO4. After removal
of the solvent in vacuum, the residue was purified by column chromatography
(silica gel, PE-Et2O = 4:1)
to provide the desired products 2a and 3a.
(5
E
,10
E
)-Tetramethyl-5,10-diphenyl-3a,4,8a,9-tetrahydropyrene-2,2,7,7(1
H
,3
H
,6
H
,8
H
)-tetracarboxy-late (2a)
Colorless crystal; mp 193-194 ˚C
(hexane-Et2O). ¹H NMR (300
MHz, CDCl3): δ = 7.36-7.17
(m, 10 H), 3.67 (s, 6 H), 3.63 (s, 6 H), 3.05-2.70 (m,
10 H), 2.24 (d, J = 10.6
Hz, 2 H), 1.95-1.89 (dd, J = 13.1,
6.8 Hz, 2 H) ppm. ¹³C NMR (75 MHz,
CDCl3): δ = 172.0, 171.7, 145.2, 144.2,
136.1, 128.3, 127.7, 126.3, 59.4, 52.60, 52.59, 46.2, 43.9, 43.0,
40.4 ppm. IR (KBr): 2952, 1734, 1434, 1250, 1205, 1070, 703 cm-¹. MS
(EI): m/z = 572 [M+],
167(base). HRMS (EI): m/z calcd for
C34H36O8: 572.2410; found: 572.2413.
Dimethyl 6-[2,2-Bis(methoxycarbonyl)pent-4-enyl]-5,7-diphenyl-3a,4-dihydro-1
H
-indene-2,2(3
H
)-dicarboxy-late
(3a)
Colorless crystal;¹³ mp
87-89 ˚C (hexane-Et2O). ¹H
NMR (300 MHz, CDCl3): δ = 7.39-7.18
(m, 10 H), 4.86-4.74 (m, 1 H), 4.58-4.68 (m, 2
H), 3.77 (s, 3 H), 3.64 (s, 3 H), 3.46 (s, 3 H), 3.36 (s, 3 H),
3.32-3.22 (m, 1 H), 2.97-2.57 (m, 5 H), 2.28 (d, J = 6.9 Hz,
2 H), 2.14 (t, J = 17.4
Hz, 1 H), 2.02-1.95 (dd, J = 13.2,
8.8 Hz, 2 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 172.2,
171.9, 171.1, 142.1, 141.4, 139.2, 133.7, 133.1, 130.1, 129.8, 129.6,
128.4, 128.0, 127.8, 127.0, 126.6, 117.7, 60.2, 59.0, 52.9, 52.7,
52.0, 39.6, 39.1, 38.5, 38.4, 37.8, 30.5 ppm. IR (KBr): 2953, 1732,
1491, 1435, 1380, 763, 735, 703 cm-¹.
MS (EI): m/z = 572 [M+], 279(base).
HRMS (EI): m/z calcd for C34H36O8Na+: 595.2316 ± 0.002;
found: 595.2302.