RSS-Feed abonnieren
DOI: 10.1055/s-0029-1217560
Tandem Azide-Alkyne 1,3-Dipolar Cycloaddition/Electrophilic Addition: A Concise Three-Component Route to 4,5-Disubstituted Triazolyl-Nucleosides
Publikationsverlauf
Publikationsdatum:
15. Juli 2009 (online)

Abstract
A one-pot, three-component approach to a new family of 4,5-functionalized triazolyl-nucleosides is described. The method relies on the one-pot azide-alkyne 1,3-cycloaddition/electrophilic addition tandem reaction, which affords good yields of the corresponding 4,5-disubstituted nucleosides.
Key words
click - 3CR - tandem reaction - nucleosides
- 2a
Simons C.Wu Q.Htar TT. Curr. Top. Med. Chem. 2005, 5: 1191Reference Ris Wihthout Link - 2b Book review:
Recent Advances in Nucleosides: Chemistry
and Chemotherapy
Chu CK. Elsevier; Amsterdam: 2002.Reference Ris Wihthout Link - 2c
Wagner CR.Iyer VV.McIntee E. J. Med. Res. Rev. 2000, 417Reference Ris Wihthout Link - 3a
Kool ET. Acc. Chem. Res. 2002, 35: 936Reference Ris Wihthout Link - 3b
Guianvarc’h D.Fourrey J.-L.Maurisse R.Sun J.-S.Benhida R. Org. Lett. 2002, 4: 4209Reference Ris Wihthout Link - 3c
Guianvarc’h D.Fourrey J.-L.Sun J.-S.Maurisse R.Benhida R. Bioorg. Med. Chem. 2003, 11: 2751Reference Ris Wihthout Link - 3d
Leconte AM.Matsuda S.Hwang GT.Romesberg FE. Angew. Chem. Int. Ed. 2006, 45: 4326Reference Ris Wihthout Link - 3e
Zahn A.Leumann CJ. Chem. Eur. J. 2008, 14: 1087Reference Ris Wihthout Link - 3f
Vrábel M.Horáková P.Pivonková H.Kalachova L.Cernocká H.Cahová H.Pohl R.Sebest P.Havran L.Hocek M.Fojtzz M. Chem. Eur. J. 2009, 15: 1144Reference Ris Wihthout Link - 3g
Grigorenko NA.Leumann CJ. Chem. Eur. J. 2009, 15: 639Reference Ris Wihthout Link - 3h
Ober M.Müller H.Pieck C.Gierlich J.Carell T. J. Am. Chem. Soc. 2005, 127: 18143Reference Ris Wihthout Link - 3i
Seela F.Peng X.Li H. J. Am. Chem. Soc. 2005, 127: 7739Reference Ris Wihthout Link - 3j
Seela F.Chittepu P. J. Org. Chem. 2007, 72: 4358Reference Ris Wihthout Link - 3k
Schwögler A.Carell T. Org. Lett. 2000, 2: 1415Reference Ris Wihthout Link - 3l
Clever GH.Kaul C.Carell T. Angew. Chem. Int. Ed. 2007, 46: 6226Reference Ris Wihthout Link - 3m
Böge N.Jacobsen MI.Szombati Z.Baerns S.Di Pasquale F.Marx A.Meier C. Chem. Eur. J. 2008, 14: 11194Reference Ris Wihthout Link - 3n
Chandra M.Keller S.Gloeckner C.Bornemann B.Marx A. Chem. Eur. J. 2007, 13: 3558Reference Ris Wihthout Link - 4a
De Clercq E.Holy A. Nat. Rev. Drug Discov. 2005, 4: 928Reference Ris Wihthout Link - 4b
De Clercq E. Antivir. Res. 2005, 67: 56Reference Ris Wihthout Link - 5a For
the use of Eicar, Ribavirin and Mizoribine as Inosine Monophosphate
Dehydrogenase (IMPDH) inhibitors, see:
Moya J.Pizarro H.Jashés M.De Clercq E.Sandino AM. Antivir. Res. 2000, 48: 125;Reference Ris Wihthout Link - 5b
Shu Q.Nair V. Med. Res. Rev. 2008, 28: 219Reference Ris Wihthout Link - 5c
Barnard DL.Day CW.Bailey K.Heiner M.Montgomery R.Lauridsen L.Winslow S.Hoopes J.Li JK.Carson DA.Cottam HB.Sidwell RW. Antivir. Res. 2006, 71: 53Reference Ris Wihthout Link - 6a
Suwa A.Hirakata M.Kaneko Y.Sato S.Suzuki Y.Huwana M. Clin. Rheumatol. 2009, 28: 227Reference Ris Wihthout Link - 6b
Yokota S. Pediatr. Int. 2002, 44: 196Reference Ris Wihthout Link - 7a
Broggi J.Kumamoto H.Berteina-Raboin S.Nolan SP.Agrofoglio LA. Eur. J. Org. Chem. 2009, 1880Reference Ris Wihthout Link - 7b
Pradere U.Roy V.McBrayer TR.Schinazi RF.Agrofolio LA. Tetrahedron 2008, 64: 9044Reference Ris Wihthout Link - 7c
Joubert N.Shinazi RF.Agrofoglio LA. Tetrahedron 2005, 61: 11744Reference Ris Wihthout Link - 8a
Zhu R.Wang M.Xia Y.Qu F.Neyts J.Peng L. Bioorg. Med. Chem. Lett. 2008, 18: 3321Reference Ris Wihthout Link - 8b
Li W.Xia Y.Fan Z.Qu F.Wu Q.Peng L. Tetrahedron Lett. 2008, 49: 2804Reference Ris Wihthout Link - 8c
Xia Y.Li W.Qu F.Fan Z.Liu X.Berro C.Rauzy E.Peng L. Org. Biomol. Chem. 2007, 5: 1695Reference Ris Wihthout Link - 9
Ackermann L.Potukichi HK.Landsberg D.Vicente R. Org. Lett. 2008, 10: 3081 - 10
Li L.Zhang G.Zhu A.Zhang L. J. Org. Chem. 2008, 73: 3630 - 11a
El Akri K.Bougrin K.Balzarini J.Faraj A.Benhida R. Bioorg. Med. Chem. Lett. 2007, 17: 6656Reference Ris Wihthout Link - 11b
Guezguez R.Bougrin K.El Akri K.Benhida R. Tetrahedron Lett. 2006, 47: 4807Reference Ris Wihthout Link - 12a
Peyron C.Benhida R.Bories C.Loiseau P. Bioorg. Chem. 2005, 33: 439Reference Ris Wihthout Link - 12b
Spadafora M.Burger A.Benhida R. Synlett 2008, 1225Reference Ris Wihthout Link - 12c
Spadafora M.Mehiri M.Burger A.Benhida R. Tetrahedron Lett. 2008, 49: 3967Reference Ris Wihthout Link - 12d
Peyron C.Benhida R. Synlett 2009, 3: 472Reference Ris Wihthout Link - 13a
Tornoe CW.Christensen C.Meldal MJ. J. Org. Chem. 2002, 67: 3057Reference Ris Wihthout Link - 13b
Rostovtsev VV.Gree LG.Fokin VV.Sharpless KB. Angew. Chem. Int. Ed. 2002, 41: 2596Reference Ris Wihthout Link - 14 For mechanistic studies on the Cu-catalyzed
alkyne-azide 1,3-dipolar cycloaddition, see:
Himo F.Locell T.Hilgtaf R.Rostovtsev VV.Noodleman L.Sharpless KB.Fokin VV. J. Am. Chem. Soc. 2005, 127: 210 - 16a
Benhida R.Blanchard P.Fourrey J.-L. Tetrahedron Lett. 1998, 39: 6849Reference Ris Wihthout Link - 16b
Wirth T.Hirt UH. Synthesis 1999, 1271Reference Ris Wihthout Link - 16c
Zhdankin VV.Stang PJ. Chem. Rev. 2002, 102: 2523Reference Ris Wihthout Link - 16d
Wirth T. Top. Curr. Chem. 2003, 224Reference Ris Wihthout Link - 17 With excess of I2 as
electrophile the reaction was sluggish when only one equivalent
of DIPEA was used
Reference Ris Wihthout Link
References and Notes
Present address: Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, Faculté des Sciences, Université Mohamed-V Rabat-Agdal, Morocco
152a: ¹H NMR (200 MHz, CDCl3): δ = 1.36 (t, J = 7.1 Hz, 3 H, CH3), 1.97 (s, 3 H, Ac), 2.07 (s, 6 H, Ac), 4.07 (dd, J = 12.3, 4.2 Hz, 1 H, H-5′), 4.25-4.50 (m, 4 H, H-4′, H-5′ and CH2 ester), 5.72 (t, J = 5.5 Hz, 1 H, H-3′), 6.07 (dd, J = 5.5, 3.1 Hz, 1 H, H-2′), 6.12 (d, J = 3.1 Hz, 1 H, H-1′). ¹³C NMR (50 MHz, CDCl3): δ = 14.2, 20.4, 20.5, 20.6, 61.6, 62.5, 70.9, 73.9, 81.5, 90.3, 142.2, 159.9, 169.2, 169.4, 170.4. HRMS (ESI): m/z [M+H]+ calcd for C16H21N3O9I: 526.0322; found: 526.0317.
18
Typical procedure: To
a solution of azido-sugar (1 mmol) in CH2Cl2 (10
mL) were successively added alkyne (1.1 equiv), electrophile (3
equiv), CuX (CuI, CuBr or CuCl, 1.1 equiv) and DIPEA (see Table
[¹]
and Table
[²]
). The reaction mixture
was stirred at r.t. until the reaction was complete as indicated
by TLC. The mixture was filtered through Celite and the solvent
was removed. The crude product was purified by flash silica gel
chromatography (cyclohexane-EtOAc, 9:1→1:1) to
afford the desired 1,4,5-trisubstituted triazoles.
Analytical
data for selected compounds:
2d: ¹H
NMR (200 MHz, CDCl3): δ = 1.28 (t, J = 7.1 Hz,
3 H, CH3), 1.97 (s, 3 H, Ac), 1.98
(s, 3 H, Ac), 2.04 (s, 3 H, Ac), 4.05 (dd, J = 13.1,
5.1 Hz, 1 H, H-5′), 4.25-4.40 (m, 4 H,
H-4′, H-5′ and CH2 ester), 5.72 (t, J = 5.5 Hz,
1 H, H-3′), 5.88 (dd, J = 5.2,
3.0 Hz, 1 H, H-2′), 6.27 (d, J = 3.0
Hz, 1 H, H-1′), 7.17-7.25 (m, 3 H,
H-Ar), 7.31-7.40 (m, 2 H, H-Ar).
¹³C
NMR (50 MHz, CDCl3): δ = 14.3, 20.5,
20.6, 20.8, 61.7, 62.7, 71.0, 74.3, 81.2, 88.9, 128.3, 128.7, 129.9,
132.6, 136.8, 160.3, 169.2, 169.5, 170.7, 172.0. HRMS (ESI):
m/z [M + H]+ calcd
for C22H26N3O9Se: 556.0834;
found: 526.0829.
2e: ¹H
NMR (200 MHz, CDCl3): δ = 0.93 (t, J = 7.1 Hz,
3 H, CH3), 1.96 (s, 3 H, Ac), 2.02
(s, 3 H, Ac), 2.03 (s, 3 H, Ac), 2.37 (s, 3 H,
CH3Ph), 3.99 (dd, J = 12.3,
4.5 Hz, 1 H, H-5′), 4.07 (q, J = 7.1
Hz, 2 H, CH2 ester), 4.17 (dd, J = 12.3,
3.3 Hz, 1 H, H-5′), 4.31 (dd, J = 7.9,
4.5 Hz, 1 H, H-4′), 5.59 (t, J = 4.7
Hz, 1 H, H-3′), 6.07 (m, 2 H, H-1′ and
H-2′), 7.23 (d, J = 8.1
Hz, 2 H, H-Ar), 7.59 (d, J = 8.1
Hz, 2 H, H-Ar). ¹³C NMR (50
MHz, CDCl3): δ = 13.6, 20.3, 20.4,
20.6, 21.9, 61.6, 62.5, 70.8, 73.7, 81.7, 89.4, 129.7, 133.7, 137.6,
138.8, 146.5, 159.4, 169.1, 169.4, 170.4, 185.4. HRMS (ESI):
m/z [M + H]+ calcd
for C24H28N3O10: 518.1775;
found: 518.1781.
2h: ¹H
NMR (200 MHz, CDCl3): δ = 3.86 (s,
3 H, OCH3), 4.61 (dd, J = 12.2,
4.9 Hz, 1 H, H-5′), 4.78 (dd, J = 12.2,
3.7 Hz, 1 H, H-5′), 4.94 (dd, J = 10.9,
5.3 Hz, 1 H, H-4′), 6.35 (dd, J = 7.0,
5.1 Hz, 1 H, H-3′), 6.40 (d, J = 2.0
Hz, 1 H, H-1′), 6.50 (dd, J = 5.1,
2.0 Hz, 1 H, H-2′), 7.00 (d, J = 8.9
Hz, 2 H, H-Ar), 7.30-7.65 (m, 9 H, H-Ar),
7.85-8.10 (m, 8 H, H-Ar). ¹³C
NMR (50 MHz, CDCl3): δ = 55.4, 63.7,
71.9, 75.1, 81.2, 88.2, 114.3, 121.5, 128.1, 128.5, 128.6, 128.7, 130.0,
133.3, 133.7, 134.0, 142.3, 160.1, 165.2, 166.3.
MS (ES): m/z = 75.8 [M + Na].
To a solution of 2a (1
mmol) in toluene (10 mL) were successively added 2-(tributylstannyl)furan
(2 equiv), Pd(PPh3)2Cl2 (5 mol%),
CuI (5 mol%) and Et3N (1 equiv). The reaction
mixture was stirred for 30 min at 80 ˚C. After the
reaction was complete (¹H NMR monitoring), the mixture
was filtered through Celite and the solvent was removed. The crude
product was purified by flash silica gel chromatography (cyclohexane-EtOAc,
9:1→1:1) to afford the desired compound in 95% isolated
yield. ¹H NMR (200 MHz, CDCl3): δ = 1.37
(t, J = 7.1
Hz, 3 H, CH3), 2.00 (s, 3 H, Ac), 2.09
(s, 3 H, Ac), 2.10 (s, 3 H, Ac), 4.11 (dd, J = 12.1,
4.4 Hz, 1 H, H-5′), 4.30-4.50 (m, 4 H,
H-4′, H-5′ and CH2 ester), 5.82 (t, J = 6.2 Hz,
1 H, H-3′), 6.17 (dd, J = 5.2,
2.9 Hz, 1 H, H-2′), 6.39 (d, J = 2.9
Hz, 1 H, H-1′), 6.60 (dd, J = 3.4,
1.8 Hz, 1 H, H-furan), 7.45 (d, J = 3.4
Hz, 1 H, H-furan), 7.66 (d, J = 1.8
Hz, 1 H, H-furan). ¹³C NMR (50
MHz, CDCl3): δ = 14.4, 20.6, 20.8,
61.6, 62.9, 71.2, 74.4, 81.4, 89.7, 112.4, 117.6, 139.0, 145.3,
151.5, 157.9, 160.8, 169.4, 169.5, 170.7. HRMS (ESI): m/z [M + H]+
calcd
for C20H24N3O10: 466.1462;
found: 466.1456. This compound was then dissolved in MeOH (8 mL)
and the solution was saturated with ammonia at 0 ˚C
and stirred for 1 h at r.t. The crude product was evaporated and
purified by flash silica gel chromatography (CH2Cl2-MeOH,
9:1) to afford nucleoside 4 in 91% yield.
Free nucleoside 4: ¹H NMR
(200 MHz, CD3OD): δ = 3.60 (dd, J = 12.1,
5.6 Hz, 1 H, H-5′), 3.75 (dd, J = 12.2,
3.7 Hz, 1 H, H-5′), 3.88 (s, 3 H, OMe),
4.13 (dd, J = 9.2,
5.5 Hz, 1 H, H-4′), 4.51 (t, J = 5.4
Hz, 1 H, H-3′), 4.87 (t, J = 1.7
Hz, 1 H, H-2′), 6.17 (d, J = 2.9
Hz, 1 H, H-1′), 6.69 (dd, J = 3.4,
1.8 Hz, 1 H, H-furan), 7.36 (d, J = 3.4
Hz, 1 H, H-furan), 7.82 (d, J = 1.8 Hz,
1 H, H-furan). ¹³C NMR (50
MHz, CD3OD): δ = 52.6, 63.3, 72.2,
76.0, 87.3, 93.3, 113.0, 118.0, 139.8, 147.0, 159.0, 161.7, 162.2.
HRMS (ESI): m/z [M + Na]+ calcd
for C13H15N3O7Na: 348.0808;
found: 348.0807.
The Eicar analogue 5 was
prepared using standard Sonogashira coupling to give the protected
nucleoside intermediate: ¹H NMR (200 MHz, CDCl3): δ = 0.27
(s, 9 H, TMS), 1.37 (t, J = 7.2
Hz, 3 H, CH3), 2.02 (s, 3 H, Ac), 2.09 (s,
3 H, Ac), 2.10 (s, 3 H, Ac), 4.12 (dd, J = 12.9,
5.4 Hz, 1 H, H-5′), 4.32-4.52 (m, 4 H,
H-4, H-5′ and CH2 ester), 5.73 (t, J = 6.2 Hz,
1 H, H-3′), 5.90 (dd, J = 5.2,
2.8 Hz, 1 H, H-2′), 6.16 (d, J = 2.8
Hz, 1 H, H-1′). ¹³C
NMR (50 MHz, CDCl3): δ = -0.6,
14.3, 20.4, 20.5, 20.7, 61.5, 62.6, 70.7, 74.1, 81.1, 88.8, 113.6,
124.6, 140.6, 159.6, 169.2, 169.4, 170.6. HRMS (ESI): m/z [M + H]+ calcd
for C21H30N3O9Si: 496.1751;
found: 496.1746.
Methanolysis of this intermediate as described
above (MeOH, NH3, 48 h) led to the free nucleoside 5: ¹H NMR (200 MHz,
CD3OD): δ = 3.40 (s, 1 H,
H-alkyne), 3.60 (dd, J = 12.1,
5.7 Hz, 1 H, H-5′), 3.74 (dd, J = 12.1,
3.8 Hz, 1 H, H-5′), 4.11 (dd, J = 9.3,
5.4 Hz, 1 H, H-4′), 4.45 (t, J = 5.4 Hz,
1 H, H-3′), 4.75 (t, J = 3.4
Hz, 1 H, H-2′), 6.09 (d, J = 3.4
Hz, 1 H, H-1′). ¹³C
NMR (50 MHz, CD3OD): δ = 63.3, 72.2,
75.8, 87.4, 92.5, 94.5, 123.8, 144.3, 159.1, 163.3. HRMS (ESI): m/z [M + H]+ calcd
for C10H13N4O5: 269.0886; found:
269.0882.