Subscribe to RSS
DOI: 10.1055/s-0029-1217568
Enantioselective Ring Expansion of Prolinols: An Efficient and Short Synthesis of 2-Phenylpiperidin-3-ol Derivatives and 3-Hydroxypipecolic Acids
Publication History
Publication Date:
16 July 2009 (online)

Abstract
A very short route to 2-phenylpiperidin-3-ol derivatives and 3-hydroxypipecolic acids is described. The approach uses two key steps: a one-pot reduction/Grignard addition sequence applied to alkyl proline esters and a ring expansion applied to the corresponding prolinols.
Key words
reduction - Grignard addition - aziridinium - ring expansion - 2-phenylpiperidin-3-ols - 3-hydroxypipecolic acids
- 1a
Pinder AR. Nat. Prod. Rep. 1989, 6: 67Reference Ris Wihthout Link - 1b
Pinder AR. Nat. Prod. Rep. 1992, 9: 17Reference Ris Wihthout Link - 1c
Pinder AR. Nat. Prod. Rep. 1992, 9: 491Reference Ris Wihthout Link - 1d
Nadin A. Contemp. Org. Synth. 1997, 4: 387Reference Ris Wihthout Link - 1e
Bailey PD.Milwood PA.Smith PD. Chem. Commun. 1998, 663Reference Ris Wihthout Link - 1f
Bols M. Acc. Chem. Res. 1998, 31: 1Reference Ris Wihthout Link - 1g
Mitchinson A.Nadin A.
J. Chem. Soc., Perkin Trans. 1 1999, 2553Reference Ris Wihthout Link - 2
Fodor GB.Colasanti B. In Alkaloids: Chemical and Biological Perspectives Vol. 3:Pelletier SW. Wiley-Interscience; New York: 1985. p.1Reference Ris Wihthout Link - 3a
Baker R,Harrison T,Hollingworth GJ,Swain CJ, andWilliams BJ. inventors; EP 528,495A1.Reference Ris Wihthout Link - 3b
Harrison T.Williams BJ.Swain CJ.Ball RG. Bioorg. Med. Chem. Lett. 1994, 4: 2545Reference Ris Wihthout Link - 3c
Kramer MS.Cutler N.Feighner J.Shrivastava R.Carman J.Sramek JJ.Reines SA.Liu G.Snavely D.Wyatt-Knowles E.Hale JJ.Mills SG.MacCoss M.Swain CJ.Harrison T.Hill RG.Hefti F.Scolnick EM.Cascieri MA.Chicchi GG.Sadowski S.Williams AR.Hewson L.Smith D.Carlson EJ.Hargreaves RJ.Rupniak NMJ. Science 1998, 1640Reference Ris Wihthout Link - 4a
Baker R,Cutis NR,Elliott JM,Harrison T,Hollingworth GJ,Jackson PS,Kulagowski JJ,Sewxard EM,Swain CJ, andWilliams BJ. inventors; Int. Patent WO 97/49710.Reference Ris Wihthout Link - 4b
Kulagowski JJ.Curtis NR.Swain CJ.Williams BJ. Org. Lett. 2001, 3: 667Reference Ris Wihthout Link - 5a
von Euler US.Gaddum JH. J. Physiol. 1931, 72: 74Reference Ris Wihthout Link - 5b
Lotz M.Vaughan JH.Carson DA. Science 1987, 235: 893Reference Ris Wihthout Link - 5c
Lotz M.Vaughan JH.Carson DA. Science 1988, 241: 1218Reference Ris Wihthout Link - 5d
Mantyh CR.Gates TS.Zimmerman RP.Welton ML.Passaro EP.Vigna SR.Maggio JE.Kruger L.Manthy PW. Proc. Natl. Acad. Sci. U.S.A. 1998, 85: 3235Reference Ris Wihthout Link - 5e
Goadsby PJ.Edvinsson L.Ekman R. Ann. Neurol. 1988, 23: 193Reference Ris Wihthout Link - 5f
Perianan A.Synderman R.Malfroy B. Biochem. Biophys. Res. Commun. 1989, 161: 520Reference Ris Wihthout Link - 5g
Guard S.Watson SP. Neurochem. Int. 1991, 18: 149Reference Ris Wihthout Link - 6a
Suzuki K.Sato T.Morika M.Nagai K.Kenji A.Yamaguchi H.Sato TJ. J. Antibiot. 1991, 44: 479Reference Ris Wihthout Link - 6b
Sato T.Hirayama F.Saito T. J. Antibiot. 1991, 44: 1367Reference Ris Wihthout Link - 6c
Scott JD.Tippie TN.Williams RM. Tetrahedron Lett. 1998, 39: 3659Reference Ris Wihthout Link - 7
Quibell M.Benn A.Flinn N.Monk T.Ramjee M.Wang Y.Watts J. Bioorg. Med. Chem. 2004, 12: 5689 - For syntheses of (+)-L-733,060, see:
- 8a
Harrison T.Williams BJ.Swain CJ.Ball RG. Bioorg. Med. Chem. Lett. 1994, 4: 2545Reference Ris Wihthout Link - 8b
Calvez O.Chiaroni A.Langlois N. Tetrahedron Lett. 1998, 39: 9447Reference Ris Wihthout Link - 8c
Calvez O.Langlois N. Tetrahedron Lett. 1999, 40: 7099Reference Ris Wihthout Link - 8d
Stadler H.Bös M. Heterocycles 1999, 51: 1067Reference Ris Wihthout Link - 8e
Tomooka K.Nakazaki A.Nakaï T. J. Am. Chem. Soc. 2000, 122: 408Reference Ris Wihthout Link - 8f
Bhaskar G.Rao BV. Tetrahedron Lett. 2003, 44: 951Reference Ris Wihthout Link - 8g
Huang P.-Q.Liu L.-X.Wei B.-G.Ruan Y.-P. Org. Lett. 2003, 5: 1927Reference Ris Wihthout Link - 8h
Yoon Y.-J.Joo J.-E.Lee K.-Y.Kim Y.-H.Oh C.-Y.Ham W.-H. Tetrahedron Lett. 2005, 46: 739Reference Ris Wihthout Link - 8i
Kandula SRV.Kumar P. Tetrahedron: Asymmetry 2005, 16: 3579Reference Ris Wihthout Link - 8j
Oshitari T.Mandai T. Synlett 2006, 3395Reference Ris Wihthout Link - 8k
Cherian SK.Kumar P. Tetrahedron: Asymmetry 2007, 18: 892Reference Ris Wihthout Link - 8l
Emmanuvel L.Sudalai A. Tetrahedron Lett. 2008, 49: 5736Reference Ris Wihthout Link - 8m
Liu R.-H.Fang K.Wang B.Xu M.-H.Lin G.-Q. J. Org. Chem. 2008, 73: 3307Reference Ris Wihthout Link - For synthesis of (-)-L-733,061, see:
- 8n
Liu L.-X.Ruan Y.-P.Guo Z.-Q.Huang P.-Q. J. Org. Chem. 2004, 69: 6001Reference Ris Wihthout Link - 8o
Takahashi K.Nakano H.Fujita R. Tetrahedron Lett. 2005, 46: 8927Reference Ris Wihthout Link - 9 For synthesis of II,
see:
Kulagowski JJ.Curtis NR.Swain CJ.Williams BJ. Org. Lett. 2001, 3: 667 - For the synthesis of 3-hydroxypipecolic acids, see:
- 10a
Roemmele RC.Rapoport H. J. Org. Chem. 1989, 54: 1866Reference Ris Wihthout Link - 10b
Drummond J.Johnson G.Nickell DG.Ortwine DF.Bruns RF.Welbaum B. J. Med. Chem. 1989, 32: 2116Reference Ris Wihthout Link - 10c
Agami C.Couty F.Mathieu H. Tetrahedron Lett. 1996, 37: 4001Reference Ris Wihthout Link - 10d
Greck C.Ferreira F.Genêt J.-P. Tetrahedron Lett. 1996, 37: 2031Reference Ris Wihthout Link - 10e
Makara GM.Marshall GR. Tetrahedron Lett. 1997, 38: 5069Reference Ris Wihthout Link - 10f
Battistini L.Zanardi F.Rassu G.Spanu P.Pelosi G.Gasparri Fava G.Belicchi Ferrari M.Casiraghi G. Tetrahedron: Asymmetry 1997, 8: 2975Reference Ris Wihthout Link - 10g
Sugisaki CH.Carroll PJ.Correira CRD. Tetrahedron Lett. 1998, 39: 3413Reference Ris Wihthout Link - 10h
Scott JD.Tippie TN.Williams RM. Tetrahedron Lett. 1998, 39: 3659Reference Ris Wihthout Link - 10i
Shibasaki T.Sakurai W.Hasegawa A.Uosaki Y.Mori H.Yoshida M.Ozaki A. Tetrahedron Lett. 1999, 40: 5227Reference Ris Wihthout Link - 10j
Horikawa M.Busch-Petersen J.Corey EJ. Tetrahedron Lett. 1999, 40: 3843Reference Ris Wihthout Link - 10k
Jourdant A.Zhu J. Tetrahedron Lett. 2000, 41: 7033Reference Ris Wihthout Link - 10l
Scott JD.Williams RM. Tetrahedron Lett. 2000, 41: 8413Reference Ris Wihthout Link - 10m
Quibell M.Benn A.Flinn N.Monk T.Ramjee M.Wang Y.Watts J. Bioorg. Med. Chem. 2004, 12: 5689Reference Ris Wihthout Link - 10n
Bodas MS.Kumar P. Tetrahedron Lett. 2004, 45: 8461Reference Ris Wihthout Link - 10o
Kumar P.Bodas MS. J. Org. Chem. 2005, 70: 360Reference Ris Wihthout Link - 10p
Kim IS.Ji YJ.Jung YH. Tetrahedron Lett. 2006, 47: 7289Reference Ris Wihthout Link - 10q
Kim IS.Oh JS.Zee OP.Jung YH. Tetrahedron 2007, 63: 2622Reference Ris Wihthout Link - 10r
Takahashi R.Miyagawa T.Yoshimura Y.Kato A.Adachi I.Takahata H. Bioorg. Med. Chem. 2008, 18: 1810Reference Ris Wihthout Link - 10s
Alegret C.Ginesta X.Riera A. Eur. J. Org. Chem. 2008, 1789Reference Ris Wihthout Link - 10t
Liu L.-X.Peng Q.-L.Huang P.-Q. Tetrahedron: Asymmetry 2008, 19: 1200Reference Ris Wihthout Link - 10u
Kalamkar NB.Kasture VM.Dhavale DD. J. Org. Chem. 2008, 73: 3619Reference Ris Wihthout Link - 10v
Pham V.-T.Joo J.-E.Tian Y.-S.Chung Y.-S.Lee K.-Y.Oh C.-Y.Ham W.-H. Tetrahedron: Asymmetry 2008, 19: 318Reference Ris Wihthout Link - For comprehensive reviews, see:
- 11a
Cossy J.Gomez Pardo D. Chemtracts 2002, 15: 579Reference Ris Wihthout Link - 11b
Cossy J.Gomez Pardo D. Targets in Heterocyclic Systems Vol. 6:Attanasi OA.Spinelli D. Italian Society of Chemistry; Rome: 2002. p.1Reference Ris Wihthout Link - 12a
Cossy J.Dumas C.Michel P.Gomez Pardo D. Tetrahedron Lett. 1995, 36: 549Reference Ris Wihthout Link - 12b
Cossy J.Dumas C.Gomez Pardo D. Synlett 1997, 905Reference Ris Wihthout Link - 12c
Cossy J.Dumas C.Gomez Pardo D. Bioorg. Med. Chem. Lett. 1997, 7: 1343Reference Ris Wihthout Link - 12d
Wilken J.Kossenjans M.Saak W.Haase D.Pohl S.Martens J. Liebigs Ann./Recl. 1997, 573Reference Ris Wihthout Link - 12e
Langlois N.Calvez O. Synth. Commun. 1998, 28: 4471Reference Ris Wihthout Link - 12f
Davis PW.Osgood SA.Hébert N.Sprankle KG.Swayze EE. Biotechnol. Bioeng. 1999, 61: 143Reference Ris Wihthout Link - 12g
Cossy J.Dumas C.Gomez Pardo D. Eur. J. Org. Chem. 1999, 1693Reference Ris Wihthout Link - 12h
Michel P.Rassat A. J. Org. Chem. 2000, 65: 2572Reference Ris Wihthout Link - 12i
Cossy J.Mirguet O.Gomez Pardo D. Synlett 2001, 1575Reference Ris Wihthout Link - 12j
Brandi A.Cicchi S.Paschetta V.Gomez Pardo D.Cossy J. Tetrahedron Lett. 2002, 43: 9357Reference Ris Wihthout Link - 12k
Deyine A.Delcroix J.-M.Langlois N. Heterocycles 2004, 64: 207Reference Ris Wihthout Link - 12l
Déchamps I.Gomez Pardo D.Karoyan P.Cossy J. Synlett 2005, 1170Reference Ris Wihthout Link - 12m
Roudeau R.Gomez Pardo D.Cossy J. Tetrahedron 2006, 62: 2388Reference Ris Wihthout Link - 12n
Mena M.Bonjoch J.Gomez Pardo D.Cossy J. J. Org. Chem. 2006, 71: 5930Reference Ris Wihthout Link - 12o
Déchamps I.Gomez Pardo D.Cossy J. ARKIVOC 2007, (v): 38Reference Ris Wihthout Link - 12p
Déchamps I.Gomez Pardo D.Cossy J. Tetrahedron 2007, 63: 9082Reference Ris Wihthout Link - 12q
Métro T.-X.Gomez Pardo D.Cossy J. J. Org. Chem. 2007, 72: 6556Reference Ris Wihthout Link - 12r
Métro T.-X.Gomez Pardo D.Cossy J. Synlett 2007, 2888Reference Ris Wihthout Link - 12s
Cossy J.Gomez Pardo D.Dumas C.Mirguet O.Déchamps I.Métro T.-X.Burger B.Roudeau R.Appenzeller J.Cochi A. Chirality 2009, in pressReference Ris Wihthout Link - 13a
Bilke JL.Moore SP.O’Brien P.Gilday J. Org. Lett. 2009, 11: 1935Reference Ris Wihthout Link - 13b
O’Brien et al. (ref 13a) have shown that the ring expansion of substituted pyrrolidinols 2b and 3b using TFAA (1.5 equiv), Et3N (3 equiv), in refluxing THF for 48 h, led to the ring-expanded compounds.
Reference Ris Wihthout Link - 14a
Ibuka T.Habashita H.Otaka A.Fujii N.Ogushi Y.Uyehara T.Yamamoto Y. J. Org. Chem. 1991, 56: 4370Reference Ris Wihthout Link - 14b
Ito H.Ikeuchi Y.Taguchi T.Hanzawa Y.Shiro M. J. Am. Chem. Soc. 1994, 116: 5469Reference Ris Wihthout Link - 14c
Zhao Y. Master"s Thesis University of Pittsburgh; Pittsburgh: 2005; http://etd.library.pitt.edu/ETD/available/etd-12072005-173655/Reference Ris Wihthout Link - 14d
The excellent diastereoselectivity in the DIBAL-H/Grignard sequence was probably due to catalysis of the conversion of R2 to R1 (Scheme [³] ) due to the presence of MgBr2 in the Grignard reagent, whereas ZnCl2 or heat was used for this purpose in Ref. 14c
Reference Ris Wihthout Link - 17 Langlois et al. have shown that
the ring expansion of substituted pyrrolidinols 3b using
TFAA (1.5 equiv), Et3N (3 equiv), in refluxing THF for
44 h, led to the ring-expanded compound 5 in
22% yield, together with the starting material, see:
Calvez O.Chiaroni A.Langlois N. Tetrahedron Lett. 1998, 39: 9447 - 18 For a related rearrangement under
different conditions, see:
Lee J.Hoang T.Lewis S.Weissman SA.Askin D.Volante RP.Reider PJ. Tetrahedron Lett. 2001, 42: 6223 - 19a
Liu L.-X.Ruan Y.-P.Guo Z.-Q.Huang P.-Q. J. Org. Chem. 2004, 69: 6001Reference Ris Wihthout Link - 19b
Takahashi K.Nakano H.Fujita R. Tetrahedron Lett. 2005, 46: 8927Reference Ris Wihthout Link - 20a
Calvez O.Langlois N. Tetrahedron Lett. 1999, 40: 7099Reference Ris Wihthout Link - 20b
Calvez O. PhD Dissertation Université Paris XI Orsay; France: 2001.Reference Ris Wihthout Link - 21
Haddad M.Larchevêque M. Tetrahedron: Asymmetry 1999, 10: 4231
References and Notes
Ester reduction/alkylation
method: DIBAL-H (1.0 M in hexane, 2.61 mL, 2.61 mmol, 1.2 equiv)
was added to a solution of N-benzylproline
ethyl ester (500 mg, 2.17 mmol, 1 equiv) in CH2Cl2 (10
mL) at -78 ˚C. The resulting solution was
stirred at -78 ˚C for 30 min, followed
by the addition of commercially available PhMgBr (1.0 M in THF,
6.52 mL, 6.52 mmol, 3 equiv) dropwise at -78 ˚C.
The solution was then allowed to slowly warm to r.t. overnight.
Sat. aq NH4Cl (10 mL) was added to quench the reaction.
Sat. sodium tartrate solution (10 mL) was added to the resulting
gel. The mixture was stirred at r.t. for 30 min, then the organic
layer was extracted with CH2Cl2 (3 × 15
mL). The combined organic layers were dried over anhydrous MgSO4 and concentrated
in vacuo to give a separable mixture of diastereomers 2b and 3b, which
was purified by flash chromatography (SiO2; EtOAc-PE,
8:2) to give 2b as a yellow solid (155
mg, 27.5%) and 3b as a pale-yellow
oil (155 mg, 27.5%).
Compound
2b:
¹7,²0b R
f
= 0.1
(EtOAc-PE, 8:2); mp 93-95 ˚C; [α]D
²0 +106
(c 1.1, CHCl3). IR (neat):
3017, 1495, 1454 cm-¹. ¹H
NMR (CDCl3, 400 MHz): δ = 7.43-7.20
(m, 10 H), 4.39 (d, J = 5.2
Hz, 1 H), 3.67 (d, J = 13.0
Hz, 1 H), 3.34 (d, J = 13.0
Hz, 1 H), 3.08 (m, 1 H), 2.96 (m, 1 H),
2.40 (m, 1 H), 1.94 (m, 1 H), 1.80-1.71
(m, 3 H). ¹³C NMR (CDCl3,
100 MHz): δ = 143.8 (s), 139.5 (s), 128.8 (d),
128.7 (d), 128.6 (d), 128.4 (d), 128.4 (d), 128.3 (d), 128.3 (d), 127.1
(d), 127.0 (d), 126.2 (d), 75.3 (d), 70.2 (d), 61.2 (t), 54.3 (t),
29.4 (t), 24.3 (t). MS: m/z (%) = 160 (100)[M+˙ - CHOHPh˙],
91 (71) [PhCH2
+].
Compound 3b:
¹7,²0b R
f
= 0.2
(EtOAc-PE, 8:2); [α]D
²0 -54
(c 1, CHCl3). IR (neat): 3620,
2940, 2820, 1496, 1457 cm-¹. ¹H NMR
(CDCl3, 400 MHz): δ = 7.41-7.19
(m, 10 H), 4.89 (d, J = 3.1
Hz, 1 H), 4.18 (d, J = 12.7
Hz, 1 H), 3.46 (d, J = 12.7 Hz,
1 H), 3.05 (m, 1 H), 2.89 (m, 1 H), 2.33
(dd, J = 17,
8.1 Hz, 1 H), 1.73 (m, 1 H), 1.65-1.56
(m, 2 H), 1.32 (m, 1 H). ¹³C
NMR (CDCl3, 100 MHz): δ = 141.5 (s),
139.1 (s), 128.8 (d), 128.6 (d), 128.4 (d), 128.3 (d), 128.1 (d),
127.6 (d), 127.2 (d), 127.0 (d), 126.8 (d), 125.5 (d), 70.2 (d),
69.2 (d), 58.3 (t), 54.7 (t), 24.0 (t), 23.2 (t). MS: m/z (%) = 160 (100)[M+˙ - CHOHPh˙],
91 (71) [PhCH2
+].
General procedure
for the ring expansion of pyrrolidines to piperidines: Trifluoroacetic
anhydride (3-4 equiv) was added to a stirred solution of N-alkyl pyrrolidine (1 equiv) in THF
under argon at r.t. and Et3N (4-7 equiv) was
added. The solution was stirred and heated at 100 ˚C
for 3 h under microwave irradiation. The resulting solution was
cooled to r.t. and a solution of aqueous 3.75 M NaOH was added.
After stirring for 30 min, EtOAc was added and the two layers were
separated. The aqueous layer was extracted with EtOAc and the combined
organic layers were dried over anhydrous MgSO4 and evaporated
under reduced pressure to give the crude product.
Compound
4: Chromatography (SiO2; EtOAc-PE, 7:3), R
f
= 0.33
(EtOAc-PE, 7:3); ee >99% determined by supercritical
fluid chromatography on Daicel Chiralpak OD-H column (MeOH 5%,
flow rate 5 mL/min, t = 3.94
min); [α]D
²0 -25
(c 1.15, CHCl3). IR (neat):
3588, 3016, 2946, 1493, 1454 cm-¹. ¹H
NMR (CDCl3, 400 MHz): δ = 7.51-7.19
(m, 10 H), 3.87 (d, J = 13.6
Hz, 1 H), 3.74 (m, 1 H), 3.34 (d, J = 1.7 Hz,
1 H), 3.0 (m, 1 H), 2.88 (d, J = 13.6
Hz, 1 H), 2.05-1.89 (m, 3 H), 1.61 (m,
1 H), 1.47 (m, 1 H). ¹³C NMR
(CDCl3, 100 MHz): δ = 141.1 (s), 139.1
(s), 128.7 (d), 128.6 (d), 128.5 (d), 128.4 (d), 128.3 (d), 128.2
(d), 128.1 (d), 128.0 (d), 127.4 (d), 126.6 (d), 73.9 (d), 72.4
(d), 59.4 (t), 53.4 (t), 31.3 (t), 19.9 (t). MS: m/z (%) = 267
(3)[M+˙], 266 (3),
222 (15), 210 (6), 194 (15), 177 (13), 176 (100) [M+˙ - PhCH2
˙
], 106 (10), 91
(52) [PhCH2
+].
Compound 5:
¹7,²0b
Chromatography (SiO2; EtOAc-PE, 8:2), R
f
= 0.2
(EtOAc-PE, 8:2); ee >99% determined by supercritical
fluid chromatography on Daicel Chiralpak OD-H column (MeOH 5%,
flow rate 5 mL/min, t = 4.14
min); mp 139-141 ˚C; [α]D
²0 +27
(c 1, CHCl3). IR (neat): 3588, 3016,
2946, 1493, 1454 cm-¹. ¹H
NMR (CDCl3, 400 MHz): δ = 7.55-7.14
(m, 10 H), 3.66 (d, J = 13.6
Hz, 1 H), 3.59 (m, 1 H), 2.91 (d, J = 8.6 Hz,
1 H), 2.89 (m, 1 H), 2.83 (d, J = 13.6
Hz, 1 H), 2.09 (m, 1 H), 1.93 (m, 1 H),
1.70-1.60 (m, 2 H), 1.38 (m, 1 H). ¹³C
NMR (CDCl3, 100 MHz): δ = 141.1 (s),
139.6 (s), 128.8 (d), 128.7 (d), 128.6 (d), 128.2 (d), 128.1 (d),
127.9 (d), 127.8 (d), 127.6 (d), 126.9 (d), 126.7 (d), 76.0 (d),
73.9 (d), 59.3 (t), 52.4 (t), 32.5 (t), 23.3 (t). MS:
m/z (%) = 267
(3)[M+˙], 266 (3),
222 (15), 210 (6), 194 (15), 177 (13), 176 (100) [M+˙ - PhCH2
˙
], 106 (10), 91
(52) [PhCH2
+].