RSS-Feed abonnieren
DOI: 10.1055/s-0029-1217701
Chemoselective Isomerization of Secondary-Type Propargylic Alcohols to Propargylic/Allenic Bromides, and Brominated Dienes with Appel-Type Reaction Conditions
Publikationsverlauf
Publikationsdatum:
16. Juli 2009 (online)

Abstract
Herein is described the chemoselective isomerization of secondary-type propargylic alcohols to allenic bromides, propargylic bromides and brominated dienes under Appel-type reaction conditions containing Ph3P, CBr4 and additives.
Key words
Appel reaction - propargylic alcohol - allene - diene - isomerization
- 1
Hoffmann-Röder A.Krause N. Angew. Chem. Int. Ed. 2004, 43: 1196 - For selected recent books and reviews for allene chemistry, see:
- 2a
Krause N.Hashmi ASK. In Modern Allene Chemistry Vol. 1: Wiley-VCH; Weinheim: 2004.Reference Ris Wihthout Link - 2b
Krause N.Hashmi ASK. In Modern Allene Chemistry Vol. 2: Wiley-VCH; Weinheim: 2004.Reference Ris Wihthout Link - 2c
Kwong CK.-W.Fu MY.Lam CS.-L.Toy PH. Synthesis 2008, 2307Reference Ris Wihthout Link - 2d
Ma S. Chem. Rev. 2005, 105: 2829Reference Ris Wihthout Link - 2e
Miesch M. Synthesis 2004, 746Reference Ris Wihthout Link - 2f
Krause N.Hoffmann-Röder A. Tetrahedron 2004, 60: 11671Reference Ris Wihthout Link - 2g
Lu X.Zhang C.Xu Z. Acc. Chem. Res. 2001, 34: 535Reference Ris Wihthout Link - 3
Sakai N.Hirasawa M.Konakahara T. Tetrahedron Lett. 2005, 46: 6407 - 4a
Das B.Damodar K.Bhunia N.Shashikanth B. Tetrahedron Lett. 2009, 50: 2072Reference Ris Wihthout Link - 4b
Das B.Kanth BS.Reddy KR.Satyalakshmi G.Kumar RA. Chem. Lett. 2008, 37: 512Reference Ris Wihthout Link - 5
Appel R. Angew. Chem., Int. Ed. Engl. 1975, 14: 801 - 6a
Alexakis A.Marek I.Mangeney P.Normant JF.
J. Am. Chem. Soc. 1990, 112: 8042Reference Ris Wihthout Link - 6b
Marek I.Mangeney P.Alexakis A.Normant JF. Tetrahedron Lett. 1986, 27: 5499Reference Ris Wihthout Link - 6c
Rona P.Crabbe P. J. Am. Chem. Soc. 1969, 91: 3289Reference Ris Wihthout Link - 6d
Rona P.Crabbe P. J. Am. Chem. Soc. 1968, 90: 4733Reference Ris Wihthout Link - 7a
Keinan E.Bosch E. J. Org. Chem. 1986, 51: 4006Reference Ris Wihthout Link - 7b
Elsevier CJ.Stehouwer PM.Westmijze H.Vermeer P. J. Org. Chem. 1983, 48: 1103Reference Ris Wihthout Link - 8a
Moreau J.-L.Gaudemar M. J. Organomet. Chem. 1976, 108: 159Reference Ris Wihthout Link - 8b
Alexakis A.Commercon A.Villiéras J.Normant JF. Tetrahedron Lett. 1976, 2313Reference Ris Wihthout Link - 9
Wenkert E.Leftin MH.Michelotti EL. J. Org. Chem. 1985, 50: 1122 - 10a
Riveiros R.Rodriguez D.Perez Sestelo J.Sarandeses LA. Org. Lett. 2006, 8: 1403Reference Ris Wihthout Link - 10b
Yoshida M.Gotou T.Ihara M. Tetrahedron Lett. 2004, 45: 5573Reference Ris Wihthout Link - 10c
Lee K.Seomoon D.Lee PH. Angew. Chem. Int. Ed. 2002, 41: 3901Reference Ris Wihthout Link - 10d
Pasto DJ.Chou S.-K.Waterhouse A.Shults RH.Hennion GF. J. Org. Chem. 1978, 43: 1385Reference Ris Wihthout Link - 11a
Sanz R.Miguel D.Martinez A.Alvarez-Gutierrez JM.Rodriguez F. Org. Lett. 2007, 9: 727Reference Ris Wihthout Link - 11b
Huang W.Wang J.Shen Q.Zhou X. Tetrahedron 2007, 63: 11636Reference Ris Wihthout Link - 11c
Ishikawa T.Aikawa T.Mori Y.Saito S. Org. Lett. 2003, 5: 51Reference Ris Wihthout Link - 11d
Ishikawa T.Okano M.Aikawa T.Saito S. J. Org. Chem. 2001, 66: 4635Reference Ris Wihthout Link - 12a
Myers AG.Zheng B. J. Am. Chem. Soc. 1996, 118: 4492Reference Ris Wihthout Link - 12b
Corey EJ.Boaz NW. Tetrahedron Lett. 1984, 25: 3055Reference Ris Wihthout Link - 12c
Parker KA.Petraitis JJ. Tetrahedron Lett. 1977, 4561Reference Ris Wihthout Link - 14a
Guo C.Lu X. J. Chem. Soc., Perkin Trans. 1 1993, 1921Reference Ris Wihthout Link - 14b
Trost BM.Kazmaier U. J. Am. Chem. Soc. 1992, 114: 7933Reference Ris Wihthout Link - 14c
Trost BM.Schmidt T. J. Am. Chem. Soc. 1988, 110: 2301Reference Ris Wihthout Link - 14d
Lu X.Ma D. Pure Appl. Chem. 1990, 62: 723Reference Ris Wihthout Link - 15 When the same reaction was conducted
with CCl4 instead of CBr4, the corresponding
chlorinated allene derivative was obtained in 40% yield.
For a selected paper on the SN2-type chlorination of
a primary alcohol using CCl4 and PPh3, see:
Lee JB.Downie IM. Tetrahedron 1967, 23: 359 - 18a
Slagle JD.Huang TTS.Franzus B. J. Org. Chem. 1981, 46: 3526Reference Ris Wihthout Link - 18b
Jones LA.Sumner CE.Franzus B.Huang TTS.Snyder EI. J. Org. Chem. 1978, 43: 2821Reference Ris Wihthout Link
References and Notes
General Procedure for the Synthesis of Allene Derivatives 2: CBr4 (331 mg, 1.0 mmol), Ph3P (262 mg, 1.0 mmol), propargylic alcohol 1 (0.50 mmol), i-Pr2NEt (129 mg, 1.0 mmol), P(n-Bu)3 (10 mg, 0.05 mmol), and a freshly distilled toluene (1 mL) were successively added into a screw-capped vial, and the vial was sealed with a cap containing a PTFE septum. The reaction mixture was stirred at 100 ˚C, and monitored by TLC until the propargylic alcohol 1 was consumed. To quench the reaction, H2O (2 mL) was added to the mixture. The mixture was extracted with CH2Cl2 (3 ×), and the combined organic extracts were dried over Na2SO4, filtered, and then evaporated under reduced pressure. The crude product was purified by silica gel chromatography(hexane) to produce the allene derivative 2, and if necessary, was further purified by a recycling preparative HPLC equipped with a GPC column (chloroform as an eluent). Spectral data for selected compound: 1-(3-Bromo-1,2-nonadien-1-yl)benzene (2a): pale yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 0.86 (t, 3 H, J = 7.2 Hz), 1.24-1.38 (m, 6 H), 1.50 (quint, 2 H, J = 7.2 Hz), 2.52 (td, 2 H, J = 7.2, 3.0 Hz), 6.19 (t, 1 H, J = 3.0 Hz), 7.23-7.27 (m, 1 H), 7.32-7.33 (m, 4 H). ¹³C NMR (75 MHz, CDCl3): δ = 13.9, 22.5, 27.9, 28.2, 31.4, 38.0, 96.1, 100.3, 127.7, 128.1, 128.7, 133.0, 199.8. MS (FAB): m/z (%) = 281 (100) [M+], 279 (40) [M+]. HRMS (FAB): m/z calcd for C15H20Br: 279.0748; found: 279.0726.
16
General Procedure
for the Synthesis of Diene Derivatives 3: The same procedure
as above without i-Pr2NEt
gave the diene derivative 3. However, formation
of a quite small amount of the (1Z,3E)-diene along with the (1E,3E)-diene separable
by column chromatography was observed by NMR. Spectral data for
selected compound: [(1E,3E)-3-Bromo-1,3-nonadien-1-yl]benzene
(3a): pale brown oil. ¹H NMR
(300 MHz, CDCl3): δ = 0.88 (t, 3 H, J = 7.2 Hz), 1.27 (m, 3 H),
1.35 (m, 1 H), 1.47 (m, 2 H), 2.35 (q, 2 H, J = 7.2 Hz),
6.08 (t, 1 H, J = 7.2 Hz), 6.73
(d, 1 H, J = 15.0 Hz), 6.89 (d,
1 H, J = 15.0 Hz), 7.23 (m,
1 H), 7.30 (m, 2 H), 7.42 (m, 2 H). ¹³C
NMR (75 MHz, CDCl3): δ = 13.9, 22.4,
28.1, 31.4, 31.7, 126.7, 126.9, 127.7, 127.9, 128.6, 128.7, 132.1,
135.3. MS (EI): m/z = 279 [M+].
HRMS (FAB): m/z calcd
for C15H20Br: 279.0748; found: 279.0728. Stereochemistry (1E,3E) of the
isolated compound was determined by
the chemical shift
and coupling constant of the related compound. Specific peaks derived
from (1Z,3E)-diene 3a were observed by ¹H
NMR. ¹H NMR: δ = 5.87 (t,
1 H, J = 7.2 Hz), 6.76 (d, 2
H, J = 15.0 Hz), 6.94 (d, 1
H, J = 15.0 Hz). Other peaks
overlapped with those of the (1E,3E)-diene.
We have no clear cause for the low yield of diene derivative 3; however, formation of several complex products, which were probably derived from the starting propargylic alcohol, was observed by an NMR measurement.