Subscribe to RSS
DOI: 10.1055/s-0029-1217730
Highly Efficient Suzuki Coupling of Aryl Chlorides in a Continuous Flow Capillary Microreactor
Publication History
Publication Date:
27 August 2009 (online)

Abstract
The Suzuki reactions of aryl chlorides containing both electron-donating and electron-withdrawing groups with aryl boronic acid, catalyzed by a simple non-phosphine ligand catalyst system, Pd(OAc)2/DABCO, were performed in a continuous capillary microreactor at 50 ˚C. In the microreactor, the coupling product was obtained mostly in near quantitative yield within a four hour residence time. In contrast, the conversions were only 12-69% in batch reactions.
Key words
Suzuki - coupling - aryl chlorides - capillary - microreactor
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1a
Chighine A.Sechi G.Bradley M. Drug Discovery Today 2007, 12: 459Reference Ris Wihthout Link - 1b
Kirschning A.Solodenko W.Mennecke K. Chem. Eur. J. 2006, 12: 5972Reference Ris Wihthout Link - 1c
Yoshida J.Nagaki A.Iwasaki T.Suga S. Chem. Eng. Technol. 2005, 28: 259Reference Ris Wihthout Link - 2a
Deng Z.Chuaqui C.Singh J. J. Med. Chem. 2006, 49: 490Reference Ris Wihthout Link - 2b
Houghten RA.Yu Y. J. Am. Chem. Soc. 2005, 127: 8582Reference Ris Wihthout Link - 2c
Parlow JJ. Curr. Opin. Drug Discovery Dev. 2005, 8: 757Reference Ris Wihthout Link - 3a
Huryn DM.Cosford NDP. Annu. Rep. Med. Chem. 2007, 42: 401Reference Ris Wihthout Link - 3b
George ED.Farid SS. Ind. Eng. Chem. Res. 2008, 47: 8762Reference Ris Wihthout Link - 3c
Takagi T.Ramachandran C.Bermejo M.Yamashita S.Yu LX.Amidon GL. Mol. Pharm. 2006, 3: 631Reference Ris Wihthout Link - 4a
Watts P.Haswell SJ. Chem. Soc. Rev. 2005, 34: 235Reference Ris Wihthout Link - 4b
Wiles C.Watts P.Haswell SJ.Pombo-Villar E. Lab Chip 2001, 1: 100Reference Ris Wihthout Link - 4c
Kawaguchi T.Miyata H.Ataka K.Mae K.Yoshida J. Angew. Chem. Int. Ed. 2005, 44: 2413Reference Ris Wihthout Link - 4d
Lainchbury MD.Medley MI.Taylor PM.Hirst P.Dohle W.Booker-Milburn KI. J. Org. Chem. 2008, 73: 6497Reference Ris Wihthout Link - 5
Grant D.Dahl R.Cosford NDP. J. Org. Chem. 2008, 73: 7219 - 6a
Jamwal N.Gupta M.Paul S. Green Chem. 2008, 10: 999Reference Ris Wihthout Link - 6b
Liu L.Zhang Y.Xin B. J. Org. Chem. 2006, 71: 3994Reference Ris Wihthout Link - 6c
Leadbeater NE.Smith RJ. Org. Lett. 2006, 8: 4589Reference Ris Wihthout Link - 6d
Zhou JR.Fu GC. J. Am. Chem. Soc. 2004, 126: 1340Reference Ris Wihthout Link - 6e
Molander GA.Gormisky PE. J. Org. Chem. 2008, 73: 7481Reference Ris Wihthout Link - 7a
Miyaura N.Suzuki A. Chem. Rev. 1995, 95: 2457Reference Ris Wihthout Link - 7b
Kotha S.Lahiri K.Kashinath D. Tetrahedron 2002, 58: 9633Reference Ris Wihthout Link - 8a
Barder TE.Buchwald SL. Org. Lett. 2004, 6: 2649Reference Ris Wihthout Link - 8b
Colacot TJ.Shea HA. Org. Lett. 2004, 6: 3731Reference Ris Wihthout Link - 8c
Walker SD.Barder TE.Martinelli JR.Buchwald SL. Angew. Chem. Int. Ed. 2004, 43: 1871Reference Ris Wihthout Link - 8d
Barder TE.Walker SD.Martinelli JR.Buchwald SL. J. Am. Chem. Soc. 2005, 127: 4685Reference Ris Wihthout Link - 8e
Zapf A.Jackstell R.Rataboul F.Reirmeier T.Monsees A.Fuhrmann C.Shaikh N.Dingerdissen U.Beller M. Chem. Commun. 2004, 38Reference Ris Wihthout Link - 8f
Zapf A.Beller M. Chem. Commun. 2005, 431Reference Ris Wihthout Link - 8g
Kwong FY.Lam WH.Yeung CH.Chan KS.Chan ASC. Chem. Commun. 2004, 1922Reference Ris Wihthout Link - 8h
So CM.Lau CP.Kwong FY. Org. Lett. 2007, 9: 2795Reference Ris Wihthout Link - 8i
So CM.Lau CP.Kwong FY. Angew. Chem. Int. Ed. 2008, 47: 8059Reference Ris Wihthout Link - 8j
Yin J.Rainka MP.Zhang XX.Buchwald SL. J. Am. Chem. Soc. 2002, 124: 1162Reference Ris Wihthout Link - 9a
Comer E.Organ MG. J. Am. Chem. Soc. 2005, 127: 8160Reference Ris Wihthout Link - 9b
Liu LF.Zhang YH.Wang YG. J. Org. Chem. 2005, 70: 6122Reference Ris Wihthout Link - 10
Basheer C.Hussain FSJ.Lee HK.Valiyaveettil S. Tetrahedron Lett. 2004, 45: 7297 - 11
Li JH.Hu XC.Yun L.Xie YX. Tetrahedron 2006, 62: 31 - 12a
Gong JF.Zhang YH.Song MP.Xu C. Organometallics 2007, 26: 6487Reference Ris Wihthout Link - 12b
Reine S.Katarzyna G.Eric F.Veronique D. Adv. Synth. Catal. 2007, 349: 373Reference Ris Wihthout Link - 13a
Ming SC.Po LC.Yee KF. Org. Lett. 2007, 9: 2795Reference Ris Wihthout Link - 13b
Kantam ML.Roy M.Roy S.Sreedhar B.Madhavendra SS.Choudary BM.Dec RL. Tetrahedron 2007, 63: 8002Reference Ris Wihthout Link - 14a
Stanetty P.Schnurch M.Mihovilovic MD. J. Org. Chem. 2006, 71: 3754Reference Ris Wihthout Link - 14b
Kwon MS.Kim S.Park S.Bosco W.Chidrala RK.Park J. J. Org. Chem. 2009, 74: 2877Reference Ris Wihthout Link - 14c
Huang H.Liu H.Jiang H.Chen K. J. Org. Chem. 2008, 73: 6037Reference Ris Wihthout Link - 14d
Wan Y.Wang H.Zhao Q.Klingstedt M.Terasaki O.Zhao D. J. Am. Chem. Soc. 2009, 131: 4541Reference Ris Wihthout Link - 14e
Wang DH.Mei TS.Yu JQ. J. Am. Chem. Soc. 2008, 130: 17676Reference Ris Wihthout Link - 15a
Li JH.Zhu QM.Xie YX. Tetrahedron 2006, 62: 10888Reference Ris Wihthout Link - 15b
Li JH.Liu WJ.Xie YX. J. Org. Chem. 2005, 70: 5409Reference Ris Wihthout Link - 16
Leadbeater NE.Marco M. Org. Lett. 2002, 4: 2973 - 17a
Fukuyama T.Shinmen M.Nishitani S.Sato M.Ryu I. Org. Lett. 2002, 4: 1691Reference Ris Wihthout Link - 17b
Yoon SK.Choban ER.Kane C.Tzedakis T.Kenis PJA. J. Am. Chem. Soc. 2005, 127: 10466Reference Ris Wihthout Link - 17c
Wiles C.Watts P.Haswell SJ.Villar EP. Org. Proc. Res. Dev. 2004, 8: 28Reference Ris Wihthout Link - 17d
Tanaka K.Motomatsu S.Koyama K.Tanaka S.Fukase K. Org. Lett. 2007, 9: 299Reference Ris Wihthout Link - 17e
Baxendale IR.Jones CMG.Ley SV.Tranmer GK. Chem. Eur. J. 2006, 12: 4407Reference Ris Wihthout Link - 17f
Worz O.Jackel KP.Richter T.Wolf A. Chem. Eng. Technol. 2001, 24: 138Reference Ris Wihthout Link - 17g
Schubert K.Brandner J.Fichtner M.Linder G.Schygulla U.Wenka A. Microscale Thermophys. Eng. 2001, 5: 17Reference Ris Wihthout Link - 20
Tanaka K.Motomatsu S.Koyama K.Tanaka S.Fukase K. Org. Lett. 2007, 9: 299
References and Notes
Microreactor Reaction; Typical Procedure. A stock solution of the aryl chloride (0.1 mmol), Pd(OAc)2 (3 mol%), DABCO (6 mol%) and TBAB (0.1 equiv), in DMF (1 mL) was prepared and taken up in a SGE gas-tight syringe. A second stock solution containing K3PO4˙3H2O (3 equiv), and phenylboronic acid (1.5 equiv) in H2O (1 mL), containing DMF (50 µL) as an added to dissolve phenylboronic acid, was also prepared and taken up in a second SGE gas-tight syringe. The syringes were placed on a TS2-60 syringe pump that was set to deliver 0.9 µL/min and the oil bath was set at 50 ˚C. The output from the reactor was quenched with Et2O immediately. The resulting mixture was extracted with Et2O (3 × 5 mL) and the combined organic phase was washed with brine, and dried with anhydrous Na2SO4, then concentrated and the desired product was submitted for NMR analysis. In optimization experiments, the ¹H NMR spectrum of the product mixture was recorded and the product conversion was determined by integration of the peaks arising from CH3 or OCH3 groups of both the aryl chloride and the product. The conversion was calculated using the formula: [Int.(prod)/Int.(prod + aryl chloride)] × 100.
19Batch Reaction; Typical Procedure. A mixture of aryl chloride (0.5 mmol), phenylboronic acid (1.5 equiv), Pd(OAc)2 (3 mol%), DABCO (6 mol%), TBAB (0.1 equiv), K3PO4˙3H2O (3 equiv), H2O (5 mL) and DMF (5 mL), was added to a 25 mL round-bottomed flask, and stirred at 50 ˚C or 80 ˚C for either 4 h or 24 h. After the reaction, the solution was cooled to room temperature and extracted with Et2O (3 × 15 mL). The combined organic phase was washed with brine, and dried with anhydrous Na2SO4, then concentrated and the product was analyzed by ¹H NMR in order to judge the conversion of aryl chloride. All of the final compounds in this study were isolated by silica gel chromatography (petroleum ether) for the purpose of spectroscopic identification.